

Sonopant Dandekar Shikshan Mandali's

Sonopant Dandekar Arts, V.S. Apte Commerce and M.H. Mehta Science College, Palghar Kharekuran Road, Palghar (W), Tal. & Dist - Palghar, Maharashtra

FACULTY OF SCIENCE

Bachelor of Science

Course Outcome

MDeshmukh

Prof. Mahesh Deshmukh IQAC Convener

Prof. Mahesh M. Deshmukh
Vice Principal & IQAC Convenor
Senopant Dandekar Arts VS Apte Commerce and
M H Mehta Science College Palghar

	SCIENCE – UNDERGRADUATE
Program Name:	Bachelor of Science (Chemistry)
Department	Chemistry
Total Number of Courses Offered	First Year – 03 per Semester Second Year – 04 per Semester Third Year – 10 per Semester Total Courses = 38

Subjects Offered by the Institute				
	First Year – Bachelor (of Science	e (Chemistry)	
Sr. No. Semester – I Sr. No. Semester – II				
1	Chemistry Paper-I	1	Chemistry Paper-I	
2	Chemistry Paper-II	2	Chemistry Paper-II	
3	Chemistry Practical	3	Chemistry Practical	

Subjects Offered by the Institute					
	Second Year – Bachelor	of Science	ce (Chemistry)		
Sr. No.	Sr. No. Semester – III Sr. No. Semester – IV				
1	Chemistry Paper-I	1	Chemistry Paper-I		
2	Chemistry Paper-II	2	Chemistry Paper-II		
3	Basics of Analytical Chemistry	3	Basics of Analytical Chemistry		
4	Chemistry Practical	4	Chemistry Practical		

	Subjects Offered by the Institute				
	Third Year – Bachelor of Science (Chemistry)				
Sr. No.	Semester – V	Sr. No.	Semester – VI		
1	Physical Chemistry	1	Physical Chemistry		
2	Inorganic Chemistry	2	Inorganic Chemistry		
3	Organic Chemistry	3	Organic Chemistry		
4	Analytical Chemistry	4	Analytical Chemistry		
5	Applied Component (Drugs & Dyes)	5	Applied Component (Drugs & Dyes)		
6	Physical Chemistry Practical	6	Physical Chemistry Practical		
7	Inorganic Chemistry Practical	7	Inorganic Chemistry Practical		
8	Organic Chemistry Practical	8	Organic Chemistry Practical		
9	Analytical Chemistry Practical	9	Analytical Chemistry Practical		
10	Applied Component (Drugs & Dyes) Practical	10	Applied Component (Drugs & Dyes) Practical		

FACULTY OF SCIENCE – UNDERGRADUATE				
Program Name:	Bachelor of Science(Chemistry)			
Assessment:	College Pattern: 75:25 Marks			
Objectives & Outcome Framed by:	Institute			
Syllabus Copy Link:	https://archive.mu.ac.in/syllabus/4.6%20CHEMISTRY%20.pdf			
Department	Chemistry			

Course Code:	USCH101	Class:	FYBSC (CHEMISTRY)	Semester:	1
Course Name:	CHEMISTRY PAPER-I				
Course Objectives:					

- To apply the fundamental principles of chemical thermodynamics to analyze and solve 1. problems related to energy transfer, work, and chemical reactions.
- To gain a comprehensive understanding of the structure and behavior of atoms, 2. allowing them to predict and explain periodic trends.
- To develop a solid foundation in the fundamentals of organic chemistry, enabling them 3. to understand the structure, properties, and reactivity of organic molecules
- To develop critical thinking and analytical skills, enabling them to evaluate scientific 4. information and solve complex problems & allowing them to effectively present their findings and collaborate with others.

	intaings and conduct with others.					
Cours	e Outcome:	Level of Blooms Taxonomy				
CO1:	Learner will be able to apply the fundamental principles of chemical thermodynamics to analyze and solve problems related to energy transfer, work, and chemical reactions.	APPLY				
CO2:	Learner will gain a comprehensive understanding of the structure and behavior of atoms, allowing them to predict and explain periodic trends.	UNDERSTAND				
CO3:	Learner will develop a solid foundation in the fundamentals of organic chemistry, enabling them to understand the structure, properties, and reactivity of organic molecules	UNDERSTAND				
CO4:	Learner will develop critical thinking and analytical skills, enabling them to evaluate scientific information and solve complex problems & allowing them to effectively present their findings and collaborate with others.	EVALUATE				

Course	e Code:	USCH201 Class: FYBSC (CHEMISTRY) Semester: II					
Course	e Name:	CHEMISTRY PAPER-I					
Course	Objectives:						
1.	To understand and apply the principles of gas behavior, chemical equilibria, and thermodynamics to solve problems related to pressure, volume, temperature, and spontaneity of reactions.						
2.	To gain a comprehensive understanding of qualitative analysis and acid-base theories, enabling them to identify unknown compounds, predict reaction behavior, and solve titration problems						
3.	To develop a strong foundation in the chemistry of aliphatic hydrocarbons, allowing them to predict reaction outcomes, design synthetic pathways, and interpret complex reaction mechanisms.						
4.	To apply chemical principles to analyze and solve problems related to various chemical phenomena.				mical		
Course	Outcomo				Lovel of Bloc	m's Tayonon	

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learner will be able to understand and apply the principles of gas behavior, chemical equilibria, and thermodynamics to solve problems related to pressure, volume, temperature, and spontaneity of reactions.	UNDERSTAND, APPLY
CO2:	Learner will gain a comprehensive understanding of qualitative analysis and acid-base theories, enabling them to identify unknown compounds, predict reaction behavior, and solve titration problems	UNDERSTAND, APPLY
CO3:	Learner will develop a strong foundation in the chemistry of aliphatic hydrocarbons, allowing them to predict reaction outcomes, design synthetic pathways, and interpret complex reaction mechanisms.	ANALYZE, APPLY
CO4:	Learner will be able to apply chemical principles to analyze and solve problems related to various chemical phenomena.	UNDERSTAND, APPLY

Course	e Code:	USCH102	Class:	FYBSC (CHEMISTRY)	Semester:	I
Course	Course Name: CHEMISTRY PAPER-II						
Course	e Objectives:						
1.	To gain a fundamental understanding of reaction kinetics and liquid properties, enabling them to analyze reaction rates, interpret experimental data, and design experiments.						
2.	To develop a comprehensive understanding of the comparative chemistry of main						
3.	To acquire a strong foundation in stereochemistry, enabling them to identify and distinguish isomeric forms, analyze conformational stability, and predict optical activity						
4.	To develop critical thinking and problem-solving skills through analysis, evaluation, and creative application of chemical knowledge.			n, and			
Course	e Outcome:				Level of Bloo	om's Taxonoi	my
CO1:	reaction kinetic	ain a fundamental ur es and liquid properties tion rates, interpret exp eriments.	, enablin	g them	APPLY &	UNDERSTAN	D
CO2:	of the compara	velop a comprehensive tive chemistry of main p n to predict prope	group ele	ements,	UNDERST <i>A</i>	AND & ANAL	YZE

ANALYZE

EVALUATE & APPLY

reactions, and assess environmental impact.

CO3: distinguish isomeric forms, analyze conformational

stability, and predict optical activity.

application of chemical knowledge.

CO4:

Learner will acquire a strong foundation in stereochemistry, enabling them to identify and

Learner will develop critical thinking and problemsolving skills through analysis, evaluation, and creative

Cours	e Code:	USCH202	Class:	FYBSC (CHEMISTRY)	Semester:	П
	e Name:	CHEMISTRY PAPER-II		(0.12.1.1.2.1.1.7)		
Cours	e Objectives:					
To gain a fundamental understanding of chemical bonding and its influence on reactivity, enabling them to predict molecular shapes, analyze redox processes, and design practical applications						
2.	To develop a comprehensive understanding of stereochemistry in cycloalkanes and the unique properties of aromatic compounds, enabling them to analyze conformations stability, predict reactivity patterns, and design aromatic synthesis strategies					
3.	To gain valuable conceptual understanding, preparing them for further study and research in chemistry and related fields				and	
4.	understand ligh studies & acqui	colid foundation in the nt-driven processes, pre ire proficiency in unders quantitative analysis of pplications.	dict read standing	tion outcomes, and de and utilizing molecula	esign experim r spectroscop	ental by for

Cours	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learner will gain a fundamental understanding of chemical bonding and its influence on reactivity, enabling them to predict molecular shapes, analyze redox processes, and design practical applications.	UNDERSTAND
CO2:	Learner will develop a comprehensive understanding of stereochemistry in cycloalkanes and the unique properties of aromatic compounds, enabling them to analyze conformational stability, predict reactivity patterns, and design aromatic synthesis strategies.	UNDERSTAND
CO3:	Learner will gain valuable conceptual understanding, preparing them for further study and research in chemistry and related fields.	UNDERSTAND
CO4:	Learner will develop a solid foundation in the principles of photochemistry, allowing them to understand light-driven processes, predict reaction outcomes, and design experimental studies & acquire proficiency in understanding and utilizing molecular spectroscopy for qualitative and quantitative analysis of molecules, providing a valuable tool for further research and applications.	UNDERSTAND & ANALYZE

Course	e Code:	USCHP1	Class:	FYBSC (CHEMISTRY)	Semester:	I
Course	e Name:	CHEMISTRY PRACTICA	L			
Course Objectives:						
To gain practical skills in performing physical chemistry experiments, understanding						nding
1.						
	Jahoratory work and research					

- To develop a strong understanding of inorganic chemistry principles and analytical techniques, enabling them to analyze the composition of various inorganic materials and solve real-world problems.
- To become proficient in organic laboratory techniques, learn to identify and purify organic compounds, and develop critical thinking skills for analyzing experimental data.

 To enhance their critical thinking, problem-solving, and analytical skills, preparing them for further study and research in chemistry and related fields.

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learner will gain practical skills in performing physical chemistry experiments, understanding theoretical concepts, and interpreting experimental data, preparing them for further laboratory work and research.	UNDERSTAND, APPLY
CO2:	Learner will develop a strong understanding of inorganic chemistry principles and analytical techniques, enabling them to analyze the composition of various inorganic materials and solve real-world problems.	UNDERSTAND, ANALYZE
CO3:	Learner will become proficient in organic laboratory techniques, learn to identify and purify organic compounds, and develop critical thinking skills for analyzing experimental data.	ANALYZE
CO4:	Learner will enhance their critical thinking, problem- solving, and analytical skills, preparing them for further study and research in chemistry and related fields.	ANALYZE, UNDERSTAND

Course	e Code:	USCHP2	Class:	FYBSC (CHEMISTRY)	Semester:	П
Course	e Name:	CHEMISTRY PRACTICA	L			
Course	Objectives:					
1.	To gain practical skills in applying physical chemistry concepts to solve problems through experimentation, data analysis, and interpretation, preparing them for further studies and research.					
2.	To develop strong analytical skills in inorganic chemistry, enabling them to identify unknown substances, analyze complex mixtures, and understand the principles of redox reactions					
3.	To acquire proficiency in organic compound characterization techniques, enabling them to determine the identity and properties of organic molecules, analyze complex mixtures, and understand structure-property relationships					
4.	To acquire practical skills and theoretical knowledge across different branches of chemistry.					

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learner will gain practical skills in applying physical chemistry concepts to solve problems through experimentation, data analysis, and interpretation, preparing them for further studies and research.	UNDERSTAND, APPLY
CO2:	Learner will develop strong analytical skills in inorganic chemistry, enabling them to identify unknown substances, analyze complex mixtures, and understand the principles of redox reactions.	APPLY, UNDERSTAND,
CO3:	Learner will acquire proficiency in organic compound characterization techniques, enabling them to determine the identity and properties of organic molecules, analyze complex mixtures, and understand structure-property relationships.	EVALUATE, CREATE
CO4:	Learner will build practical skills and theoretical knowledge across different branches of chemistry.	CREATE, UNDERSTAND

FACULTY OF SCIENCE – UNDERGRADUATE						
Program Name:	Bachelor of Science(Cl	hemistry)			
Assessment:	College		Pattern:	75:25 N	1arks	
Objectives & Outcome Framed by:	Institute					
Syllabus Copy Link:	https://mu.ac.in/wp-c		uploads/2023	3/07/6.1-9	S.Y.B.Sc	
Department	Chemistry					
Course Code:	USCH301	Class:	SYBSC (CHE	MISTRY)	Semester:	Ш
Course Name:	CHEMISTRY PAPER-I					
Course Objectives:						

- To apply thermodynamic principles to analyze and predict chemical equilibria, understand the concepts of free energy, chemical potential, and their role in chemical reactions & able perform and interpret electrochemical measurements to gain insights into ionic properties and reactions.
- To utilize ionic and covalent bonding theories to predict structures and properties of molecules & to develop problem-solving skills in applying MO theory to understand magnetic properties and bond orders of molecules and ions.
- To gain knowledge of organic reaction mechanisms and factors influencing reactivity in organic molecules as well as predict the products and stereochemistry of organic reactions involving halogenated hydrocarbons, alcohols, phenols, and epoxides.
- 4. To acquire practical skills and theoretical understanding necessary for further studies

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learner will be able to apply thermodynamic principles to analyze and predict chemical equilibria, understand the concepts of free energy, chemical potential, and their role in chemical reactions & able perform and interpret electrochemical measurements to gain insights into ionic properties and reactions.	APPLY, UNDERSTAND
CO2:	Learner will be able to utilize ionic and covalent bonding theories to predict structures and properties of molecules & to develop problem-solving skills in applying MO theory to understand magnetic properties and bond orders of molecules and ions.	UNDERSTAND , EVALUATE
CO3:	Learner will gain knowledge of organic reaction mechanisms and factors influencing reactivity in organic molecules as well as predict the products and stereochemistry of organic reactions involving halogenated hydrocarbons, alcohols, phenols, and epoxides.	UNDERSTAND ,CREATING
CO4:	Learner will acquire practical skills and theoretical understanding necessary for further studies	UNDERSTAND

Course Code:		USCH401	Class:	SYBSC (CHEMISTRY)	Semester:	IV
Course	Name:	CHEMISTRY PAPER-I				
Course Objectives:						
1.	To analyze and interpret thermodynamic properties of electrochemical systems & apply of phase equilibria and their applications in various fields.					apply
2.	To predict the behavior of transition metal ions based on their electronic configurations & to develop skills in identifying and characterizing coordination compounds					
3.	To gain a thorough understanding of the chemistry of carboxylic acids and their derivatives					
4.	To develop ski sulphonic acid	lls in synthesizing and derivatives.	charact	erizing carboxylic acid	d derivatives	and

Cou	rse Outcome:	Level of Bloom's Taxonomy
CO1	Learner will be able to analyze and interpret thermodynamic properties of electrochemical systems & apply phase equilibria and their applications in various fields.	ANALYZE, APPLY
CO2	Learner will be able to predict the behavior of transition metal ions based on their electronic configurations & to develop skills in identifying and characterizing coordination compounds.	CREATE
CO3	: Learner will gain a thorough understanding of the chemistry of carboxylic acids and their derivatives	UNDERSTAND
CO4	Learner will develop skills in synthesizing and characterizing carboxylic acid derivatives and sulphonic acid derivatives.	UNDERSTAND

Course	e Code:	USCH302	Class:	SYBSC	(CHEMISTRY)	Semester:	Ш		
Course	e Name:	CHEMISTRY PAPER-II							
Course	Course Objectives:								
1.	To apply thermodynamic principles to analyze ideal and non-ideal solutions & basic knowledge of polymer structures and molecular weight determination.								
2.	To develop skil models.	ls in understanding an	d interp	reting ch	nemical struct	ures and bo	nding		
3.	To gain a comprehensive understanding of the structure, reactivity, and reactions of carbonyl compounds & be able to predict and explain the mechanisms of nucleophilic addition reactions.								
4.	To gain critical	thinking and problem-s	olving sk	ills					
Course	e Outcome:				Level of Bloo	m's Taxonon	ny		
CO1:	Learner will be able to apply thermodynamic principles to analyze ideal and non-ideal solutions 8 basic knowledge of polymer structures and molecular weight determination.				APPLY	/ , ANALYZE			
CO2:		develop skills in unde emical structures and b		_	UND	ERSTAND			
CO3:	Learner will gain a comprehensive understanding of					TAND, CREAT	Έ		
CO4:	Learner will gai skills.	n critical thinking and _l	oroblem-	solving	,	APPLY			

Course	e Code:	USCH402	Class:	SYBSC (CHEMISTRY)	Semester:	IV
Course	Name:	CHEMISTRY PAPER-II					
Course	Objectives:						
1.	To acquire a fundamental understanding of the principles of crystallography, X-ray diffraction, and catalysis & understand the properties and uses of nanoparticles in catalysis.						
2.	To gain a comprehensive understanding of the acidity of cations and basicity of anions in aqueous solutions & to understand environmental impact of volatile oxides and oxoacids.						
3.	To gain a deep understanding of the nomenclature, reactions, and synthetic methods of nitrogen-containing compounds like amines and diazonium salts.						
4.	To acquire knowledge of the classification, synthesis, reactivity, and reactions of heterocyclic compounds.						
Course	Outcomo				Lovel of Dice	m's Tayonon	

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learner will acquire a fundamental understanding of the principles of crystallography, X-ray diffraction, and catalysis & understand the properties and uses of nanoparticles in catalysis.	UNDERSTAND
CO2:	Learner will gain a comprehensive understanding of the acidity of cations and basicity of anions in aqueous solutions.	UNDERSTAND
CO3:	Learner will gain a deep understanding of the nomenclature, reactions, and synthetic methods of nitrogen-containing compounds like amines and diazonium salts.	UNDERSTAND,
CO4:	Learner will acquire knowledge of the classification, synthesis, reactivity, and reactions of heterocyclic compounds.	ANALYZE

Course	e Code:	USCH303	Class:	SYBSC (CHEMISTRY)	Semester:	Ш
Course Name:		Basics of Analytical Ch	emistry			
Course Objectives:						
1.	To acquire knowledge of different types of analytical methods used for analysis 8 various techniques for minimizing errors, and calculating precision and accuracy.					sis &
2.	To gain a comprehensive understanding of titrimetric and gravimetric analysis principles and techniques.					
3.	To choose and apply appropriate instrumental techniques for specific analytical problems, interpreting and analyzing the data obtained.					
4.	To develop a ba	asic understanding of va	rious ins	strumental methods ar	nd their princ	iples.

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learner will acquire knowledge of different types of analytical methods used for analysis & various techniques for minimizing errors, and calculating precision and accuracy.	UNDERSTAND, APPLY
CO2:	Learner will gain a comprehensive understanding of titrimetric and gravimetric analysis principles and techniques.	UNDERSTAND,
CO3:	Learner will be able to choose and apply appropriate instrumental techniques for specific analytical problems, interpreting and analyzing the data obtained.	CREATE, ANALYZE
CO4:	Learner will develop a basic understanding of various instrumental methods and their principles.	UNDERSTAND,

Course Code:		USCH403	Class:	SYBSC (CHEMISTRY)	Semester:	IV
Course Name:		Basics of Analytical Ch	emistry			
Course	Course Objectives:					
1.	To gain a comprehensive understanding of the principles and applications of different separation methods.					
2.	To gain knowledge of the working principles and applications of various instrumental methods based on electrical properties.					
3.	To use statistical methods to analyze and interpret analytical data accurately.					
4.	To develop skill	ls in evaluating the relia	bility an	d significance of analy	tical results.	

	, , ,	•
Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learner will gain a comprehensive understanding of the principles and applications of different separation methods.	UNDERSTAND, APPLY
CO2:	Learner will gain knowledge of the working principles and applications of various instrumental methods based on electrical properties.	APPLY
CO3:	Learner will be able to use statistical methods to analyze and interpret analytical data accurately.	ANALYZE, EVALUATE
CO4:	Learner will develop skills in evaluating the reliability and significance of analytical results.	EVALUATE, ANALYZE

Course Code:		USCHP1,2,3	Class:	SYBSC (CHEMISTRY)	Semester:	Ш
Course Name:		CHEMISTRY PRACTICA	L			
Course	Course Objectives:					
1.	To acquire practical skills and theoretical knowledge in fundamental aspects chemistry, to design, conduct, and analyze experiments in various areas of chemistry & critical thinking and problem-solving skills applicable to chemical phenomena.					
2.	To develop qualitative and quantitative analysis skills for inorganic compounds.					
3.	To develop practical skills in organic synthesis, purification, and characterization of organic compounds.					
4.	To gain theoretical knowledge and practical skills in using various tools and technique for quantitative analysis in chemistry.					ques

	to quantities and pro-	
Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learner will acquire practical skills and theoretical knowledge in fundamental aspects of chemistry, to design, conduct, and analyze experiments in various areas of chemistry & critical thinking and problemsolving skills applicable to chemical phenomena.	UNDERSTAND, ANALYZE
CO2:	Learner will develop qualitative and quantitative analysis skills for inorganic compounds.	UNDERSTAND, ANALYZE
CO3:	Learner will develop practical skills in organic synthesis, purification, and characterization of organic compounds.	UNDERSTAND, ANALYZE
CO4:	Learner will gain theoretical knowledge and practical skills in using various tools and techniques for quantitative analysis in chemistry.	UNDERSTAND, ANALYZE

Course	e Code:	USCHP1,2,3	Class:	SYBSC	(CHEMISTRY)	Semester:	IV	
Course	e Name:	CHEMISTRY PRACTICA	۱L					
Course	Course Objectives:							
1.	To gain hands-on experience with electrochemical and kinetic techniques in physical chemistry.							
2.	To develop skill	ls in microscale synthes	is and ch	aracteri	zation of inorg	ganic compou	ınds.	
3.	To develop qualitative analysis skills for identifying functional groups in organic compounds.					ganic		
4.	_	tical knowledge and pr n used in chemical anal		cills in va	arious analytic	al technique	s and	
Course	e Outcome:				Level of Bloo	m's Taxonon	าง	
CO1:	Learner will gain hands-on experience with electrochemical and kinetic techniques in physical chemistry.				UNDERS	STAND, APPLY	(
CO2:		velop skills in microsca n of inorganic compour	•	sis and	UND	DERSTAND		
CO3:	Learner will develop qualitative analysis skills for identifying functional groups in organic compounds. UNDERSTAND							
CO4:	skills in va	in theoretical knowled rious analytical te n used in chemical anal	chniques		APPLY, I	UNDERSTAND)	

FACULTY OF SCIENCE – UNDERGRADUATE

Program Name:	Bachelor of Science (Chemistry)		
Assessment:	University	Pattern:	100 Marks	
Objectives & Outcome Framed by:	Institute			
Syllabus Copy Link:	 Physical-Chemistry-6-Units http://old.mu.ac.in/wp-collorganic-Chemistry-6-Units http://old.mu.ac.in/wp-collorganic-Chemistry-6-Units http://old.mu.ac.in/wp-collorganic-Chemistry-6-Units 	s.pdf ntent/upload ts-Sem-V1.pd ntent/upload -Sem-V1.pdf ntent/upload its.pdf	ds/2016/06/4.41-TYB.Sc	
Department	Chemistry			

Course	e Code:	USCH501	Class:	TYBSC (chemistry)	Semester:	V	
Course Name:		Physical Chemistry					
Course	Course Objectives:						
1.	1. To understand the principles of different spectroscopic techniques and their applications in determining molecular structure and dynamics.						
2.	To learn the different techniques used to determine molecular weight of nonvolatile substance, to understand different theories of kinetics.						
3.	To gain a fundamental understanding of the principles and applications of nuclear chemistry, including radioactivity, nuclear reactions, and fission and fusion processes.						
4.	4. To gain a comprehensive understanding of the fundamental concepts and principles governing surface phenomena and the behavior of colloidal systems.						
	Lovel of Planms						

Course	Course Outcome:				
CO1:	Learner will understand the principles of different spectroscopic techniques and their applications in determining molecular structure and dynamics.	UNDERSTAND, APPLY			
CO2:	Learner will learn the different techniques used to determine molecular weight of non-volatile substance, to understand different theories of kinetics.	UNDERSTAND, APPLY			
CO3:	Learner will gain a fundamental understanding of the principles and applications of nuclear chemistry, including radioactivity, nuclear reactions, and fission and fusion processes.	UNDERSTAND, APPLY			

CO4: Learner will gain a comprehensive understanding of the fundamental concepts and principles governing surface phenomena and the behavior of colloidal systems.

UNDERSTAND, APPLY

Course	e Code:	USCH601	Class:	TYBSC (chemistry)	Semester:	VI
Course	e Name:	Physical Chemistry				
Course	e Objectives:					
1.	 To gain a fundamental understanding of the concepts and principles governing electrochemical systems, including activity, conductivity, different types of cells, and their applications. 					and
2.	To gain a fundamental understanding of the structure, properties, and applications of various polymer materials.					
3.	To gain a fundamental understanding of the basic principles of quantum mechanics and its application in understanding renewable energy resources like solar and hydrogen.					
To gain a fundamental understanding of the principles and applications of nuclear terms of the principles and applications of the principles and the principles are th						

	characterizing morecules and materials.	
Cours	e Outcome:	Level of Blooms Taxonomy
CO1:	Learner will gain a fundamental understanding of the concepts and principles governing electrochemical systems, including activity, conductivity, different types of cells, and their applications.	UNDERSTAND, ANALYZE
CO2:	Learner will gain a fundamental understanding of the structure, properties, and applications of various polymer materials.	UNDERSTAND, APPLY
CO3:	Learner will gain a fundamental understanding of the basic principles of quantum mechanics and its application in understanding renewable energy resources like solar and hydrogen.	UNDERSTAND, APPLY
CO4:	Learner will gain a fundamental understanding of the principles and applications of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy for characterizing molecules and materials.	UNDERSTAND, ANALYZE

Course	e Code:	USCHP01	Class:	TYBSC (chemistry)	Semester:	V
Course	e Name:	Physical Chemistry Pra	actical				
Course	Objectives:						
1.	To understand how to apply colligative properties to determine molecular weight of compounds.						
2.	To understand how to investigate the order of a chemical reaction using the fractional change method.						
3.	To analyze adsorption behavior and verify adsorption isotherm through experiment.						
4.	To understand reaction	the use of conductome	try, pote	entiomet	ry, pH metry t	to study vario	us
Course	e Outcome:				Level of Bloo	oms Taxonon	าง
CO1:	Learner will understand to apply colligative properties to determine molecular weight of compounds.				UNDERS	STAND, APPL\	1
	Learner will und	derstand how to investi	gate the	order			

UNDERSTAND, APPLY

UNDERSTAND, APPLY

UNDERSTAND, APPLY

CO2: of a chemical reaction using the fractional change

Learner will learn to analyze adsorption behavior and

verify adsorption isotherms through experiment. Learner will understand the use of conductometry, potentiometry, pH metry to study various reactions.

method.

CO3:

CO4:

Course	se Code: USCHP02 Class: TYBSC (chemistry) Semester: V						
Course	Name:	Physical Chemistry Pra	actical				
Course Objectives:							
1.	To determine reaction order and specific rate constant on the basis of experimental data and use of viscometer to determine molecular weight of polymer.						
2.	To learn the use	e of potentiometric titra	ation in (quantitat	ive analysis o	f analytes.	
3.	To understand the application of conductometric titration to determine the amounts of individual acids in a mixture.						
4.	To understand the use of colorimetry to estimate the concentration of a metal ion in a complex.						
							

	l ee r	
Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Lerner will learn to determine reaction order and specific rate constant on the basis of experimental data and use of viscometer to determine molecular weight of polymer.	UNDERSTAND, EVALUATE
CO2:	Learner will learn the use of potentiometric titration in quantitative analysis of analytes.	UNDERSTAND, APPLY
CO3:	Learner will understand the application of conductometric titration to determine the amounts of individual acids in a mixture.	UNDERSTAND, APPLY
CO4:	Learner will understand the use of colorimetry to estimate the concentration of a metal ion in a complex.	UNDERSTAND, APPLY

Course	e Code:	USCH502	Class:	TYBSC (chemistry)	Semester:	V	
Course	Name:	Inorganic Chemistry						
Course Objectives:								
1.	To learn symmetry principles to classify and analyze different molecules based on their symmetry elements and operations & to study MOT of different molecules.							
2.	To learn structure and properties of solids based on their crystal lattices and point defects & applications of superconductivity.							
3.	To learn the properties, behavior, and applications of lanthanides and actinides.							
4.	To understand the use of non-aqueous solvents & to learn the comparative chemistry of main group elements.							
_						_		

	0 - 1	
Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learner will use symmetry principles to classify and analyze different molecules based on their symmetry elements and operations & to study MOT of different molecules.	UNDERSTAND, EVALUATE
CO2:	Learner will learn the structure and properties of solids based on their crystal lattices and point defects & applications of superconductivity.	UNDERSTAND
CO3:	Learner will be able to learn the properties, behavior, and applications of lanthanides and actinides.	UNDERSTAND, EVALUATE
CO4:	Learner will understand the use of non-aqueous solvents to learn the comparative chemistry of main group elements.	UNDERSTAND, APPLY

Course	urse Code: USCH602 Class: TYBSC (chemistry) Semester:						
Course	e Name:	Inorganic Chemistry					
Course Objectives:							
1.	To study coordination complexes by using Crystal Field Theory (CFT)						
2.	To elucidate bonding and stability in coordination complexes, and recognize the limitations of CFT.						
3.	To learn synthesis, properties, reactivity, and catalytic applications of organometallic compounds.						
4.	To study the principles and processes involved in extracting and refining metals, considering environmental and economic aspects.						

	considering characteristic and economic aspects.						
Cours	e Outcome:	Level of Blooms Taxonomy					
CO1:	Learner will used to study coordination complexes by using Crystal Field Theory (CFT)	UNDERSTAND					
CO2:	Learner will be used to elucidate bonding and stability in coordination complexes, and recognize the limitations of CFT.	EVALUATE					
CO3:	Learner will be able to learn synthesis, properties, reactivity, and catalytic applications of organometallic compounds.	UNDERSTAND, APPLY					
CO4:	Learner will be able to study the principles and processes involved in extracting and refining metals, considering environmental and economic aspects.	UNDERSTAND, APPLY					

Course	rse Code: USCHP05 Class: TY				chemistry)	Semester:	V	
Course	e Name:	Inorganic Chemistry P	ractical					
Course	ourse Objectives:							
1.	1. To learn the technique of standardization							
2.	To develop skill	I for preparation of com	plex thr	ough sys	tematic meth	odology		
3.	3. To study complexometric titration with example							
4.	To evaluate the purity of the sample.							
Course	e Outcome:				Level of Bloom's Taxonomy			
CO1:	Learner will be standardization	able to learn the techning.	ique of		UNDERSTAND, APPLY			
CO2:		le to develop skill for pr gh systematic methodol	•	n of	UNDERS	TAND, CREAT	E	
CO3:	Learner will be titration with e	able to study complexo xamples.		UNDERSTAND, APPLY				
CO4:	Learner will be sample.	ie	EV	/ALUATE				

Course Code:		USCHP06	Class:	TYBSC	(chemistry)	Semester:	VI	
Course Name: Inorganic Chemistry Practical								
Course	Course Objectives:							
1.	To learn the preparation of inorganic complexes.							
2.	To understand the structure of complex and role of metal ion and ligands.							
3.	To develop analytical skills to identify unknown cations and anions in water-soluble salts.							
4.	To evaluate the purity of the sample.							
Course	e Outcome:				Level of Bloo	om's Taxonoi	ny	
CO1:	Learner will be inorganic comp	able to learn the prepa llexes.	ration o		UNDERS	STAND, APPLY	1	
CO2:	Learner will be able to understand the structure of				UND	DERSTAND		
CO3:		able to develop analyti vn cations and anions i			UNDERS	TAND, CREAT	Έ	

EVALUATE

Learner will be able to evaluate the purity of the

CO4:

sample.

Course	e Code:	USCH503	Class:	TYBSC ((chemistry)	Semester:	V	
Course	e Name:	Organic Chemistry						
Course	e Objectives:							
1.		nism of elimination read rearrangement reaction		action o	f carbonyl cor	mpound with		
2.	To learn stereochemistry of various reactions and its types.							
3.	. To understand the different rules to give nomenclature to organic compounds							
4.	To differentiate between photochemical and thermal reactions and study their mechanism.							
Course	e Outcome:				Level of Bloo	oms Taxonom	าง	
CO1:	reaction, reacti	e to learn mechanism on of carbonyl compoud rearrangement reactions	nd with	ation	UNE	DERSTAND		
CO2:		able to learn stereochens and its types.	mistry o	f	UNE	DERSTAND		
CO3:	Learner will able to understand the different rules to							
CO4:		able to differentiate be and thermal reactions		y their	UNDERST	AND, EVALUA	ιΤΕ	

Course Code:		USCH603	Class:	TYBSC (chemistry)	Semester:	VI	
Course	Name:	Organic Chemistry						
Course	Objectives:							
1.	• • •	chemical concepts to a dy structure, propertie	•	•		_	s.	
2.	To understand the mechanisms and stereochemistry of common molecular rearrangements and identify the structures and reactions of carbohydrates.							
3.	To understand the classification, properties, and applications of polymers							
4.	4. To know the roles of catalysts in organic transformations.							
Course	Outcome:				Level of Bloo	om's Taxonor	ny	
CO1:	to analyze and	able to apply stereo che predict outcomes of or ore, properties, and fun ins.	ganic re	actions	UND	DERSTAND		
CO2:	Learner will be able to understand the mechanisms						ΛΤΕ	
CO3:	Learner will able to understand the classification, properties, and applications of polymers UNDERSTAND, ANALYZE							
CO4:	Learner will be organic transfo	able to know the role rmations.	s of cata	lysts in	UNDERS	STAND, APPLY	(

Course	e Code:	USCHP09	Class:	TYBSC (chemistry)	Semester:	V		
Course	e Name:	Organic Chemistry Pra	ictical						
Course	e Objectives:								
1.		edge of chemical prope ents of binary solid-sol		·	tion technique	es to identify	and		
2.	To perform separation experiments safely and effectively.								
3.	To interpret experimental data to identify unknown components.								
4.	4. To develop critical thinking and problem-solving abilities.								
Course	e Outcome:				Level of Bloo	om's Taxonoi	ny		
CO1:	properties and	able to apply knowled separation techniques ents of binary solid-sol	to ident	ify and	UNDERS	STAND, APPLY	(
CO2:	Learner will experiments sa	be able to performed fely and effectively.	rm sep	aration	•	APPLY			
CO3:	Learner will be able to interpret experimental data to								
CO4:	Learner will be problem-solving	able to develop critic gabilities.	ng and	C	REATE				

Course Code:		USCHP10	Class:	TYBSC ((chemistry)	Semester:	VI	
Course	e Name:	Organic Chemistry Pra	actical					
Course	Course Objectives:							
1.		edge of chemical prope ents of binary solid-liq		•	•	es to identify	and	
2.	To perform sep	aration experiments sa	fely and	effective	ely.			
3.	To interpret experimental data to identify unknown components.							
4.	To develop crit	cal thinking and proble	m-solvir	ıg abilitie	es.			
Course	e Outcome:				Level of Bloo	om's Taxonoi	my	
CO1:	properties and	able to apply knowled separation techniques ents of binary solid-sol	to ident	ify and	UNDERS	STAND, APPLY	Y	
CO2:	Learner will experiments sa	be able to perfo fely and effectively.	rm sep	aration	•	APPLY		
CO3:	Learner will be able to interpret experimental data to identify unknown components. ANALYZE							
CO4:	Learner will be able to develop critical thinking a				C	CREATE		

Course Code:		USCH504	Class:	TYBSC (chemistry)	Semester:	V	
Course Name:		Analytical Chemistry						
Course Objectives:								
1. To use statistical methods in chemical analysis & learn different techniques of sampling of solid, liquid, and gasses.								
2.	To understand the basic concept of redox and complexometric titration.							
3.	To learn the principle of instrumentation, application of FES, AAS, Fluorescence phosphorescence spectroscopy, Turbidimetry, and Nephelometer.							
4.	To learn basic principles of HPLC & HPTLC.							
Course Outcome:					Level of Blo	om's Taxonoi	my	
CO1:	Learner will be able to use statistical methods in chemical analysis & learn different techniques of understand, and sampling of solid, liquid, and gasses.					ΓAND, ANALY	ZE	
CO3.	Learner will be	able to understand the	basic co	ncept	LINIT) FRSTAND		

UNDERSTAND

UNDERSTAND, APPLY

UNDERSTAND

CO2:

CO3:

CO4:

of redox and complexometric titration. Learner will be able to learn the principle of instrumentation, application of FES, AAS,

Turbidimetry, and Nephelometer.

HPLC & HPTLC.

Fluorescence phosphorescence spectroscopy,

Learner will be able to learn the basic principles of

Course Code:		USCH604	Class:	TYBSC (chemistry)	Semester:	VI			
Course Name:		Analytical Chemistry							
Course Objectives:									
1.	1. To study electro analytical technique with reference to polarography and Amperometric titration and its applications.								
2.	To learn mechanism gas chromatography and ion exchange chromatography and its application.								
3.	To do analysis of food products and adulterants in milk, honey, tea, coffee and cosmetic products.								
4.	To study basic principle and applications of thermal methods.								

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learner will be able to study electro analytical techniques with reference to polarography and Amperometric titration and its applications.	UNDERSTAND, APPLY
CO2:	Learner will be able to learn mechanism gas chromatography and ion exchange chromatography and its application.	UNDERSTAND, APPLY
CO3:	Learner will be able to do analysis of food products and adulterants in milk, honey, tea, coffee and cosmetic products.	UNDERSTAND, EVALUATE
CO4:	Learner will be able to study basic principles, Classification, and applications of thermal methods.	UNDERSTAND, EVALUATE

_		116611843	01	TVDCC /				
Course Code:		USCHP13	Class:	TARRC (chemistry)	Semester:	V	
Course	Course Name: Analytical Chemistry Practical							
Course	Course Objectives:							
1.	To become a master in handling the instruments like Colorimeter, spectrophotometer, Turbidimeter.							
2.	To apply the co	ncept of Calibration cu	rve meth	od pract	ically.			
3.	To distinguish between blank and direct titration.							
4.	To gain practical skills in quantitative chemical analysis using various instrumental and classical techniques.							
Course	e Outcome:		Level of Bloo	ms Taxonom	าง			
CO1:	Learner will be able to become masters in handling instruments like Colorimeter, spectrophotometer, Turbidimeter.			_	APPLY, l	JNDERSTAND)	
CO2:	Learner will be curve method;	able to apply the conce practically.	pt of Cali	bration	,	APPLY		
CO2:	curve method	oractically. able to distinguish bet				APPLY , EVALUATE		

using

various

EVALUATE, UNDERSTAND

CO4: quantitative

chemical

instrumental and classical techniques.

analysis

Course Code:		USCHP14	Class:	TYBSC (chemistry)	Semester:	VI		
Course Name:		Analytical Chemistry Practical							
Course	Course Objectives:								
1.	To evaluate the amount of phosphoric acid in a cola sample.								
2.	To evaluate cor	nmercial vinegar sampl	es.						
3.	To evaluate reducing sugar in honey samples.								
4.	To develop analytical skills in them								
Course	Course Outcome:				Level of Blooms Taxonomy				
CO1:	Learner will able to evaluate the amount of phosphoric acid in a cola sample.				UNDERSTA	AND, EVALUA	ND, EVALUATE		
CO2:	Learner will be sample.	able to evaluate comm	negar	UNDERSTAND, EVALUATE					
CO3:	Learner will be honey samples.	able to evaluate reduci	in	UNDERSTA	AND, EVALUA	ΙΤΕ			
CO4:	Learner will be them.	able to develop analyti	cal skills	in	UNDERS	STAND, APPLY	1		

Course Code:		USACDD501	Class:	TYBSC	(chemistry)	Semester:	V		
Course Name:		Applied Component (Drugs & Dyes)							
Course	e Objectives:								
1.	To study the various dosage forms available for medications and the routes of administration								
2.	To understand	the chemistry of drugs	with resp	pect to t	heir pharmaco	ological activi	ty		
3.	To learn the Analgesics, Antipyretics and Anti-inflammatory Drugs.								
4.	To learn different dye stuff & unit processes.								
Course Outcome:					Level of Bloom's Taxonomy				
CO1:		le to study the variou medications and t	_	_	UNDERS	STAND, APPLY	1		
CO2:	Learner will able to understand the chemistry of drugs with respect to their pharmacological activity UNDERSTAND								
CO3:		able to learn the Analgonatory Drugs.	pyretics	UND	ERSTAND				
	and Anti-inflammatory Drugs. Learner will be able to learn different dye stuff & unit processes.								

Course Code:		USACDD601	Class:	TYBSC ((chemistry)	Semester:	VI	
Course Name:		Applied Component (Drugs & Dyes)						
Course	e Objectives:							
1.	To learn Drug Metabolism, Chemotherapeutic Agents.							
2.	To Antitubercular and Antileprotic Drugs, Anti-HIV Drugs, use of Nanoparticles in Medicinal Chemistry							
3.	. To classification of dye stuff, Health and Environmental Hazards of Synthetic Dyes							
4.	To learn application of dyes, different dyestuff industry.							
Course	Course Outcome:					om's Taxonor	ny	
CO1:	Learner will be able to learn Drug Metabolism, Chemotherapeutic Agents.				UNDERSTAND,			
CO2:	Learner will be able to learn Antitubercular and Antileprotic Drugs, Anti-HIV Drugs, use of Nanoparticles in Medicinal Chemistry.				APPLY, UNDERSTAND			
CO3:	Learner will be able to learn classification of dye stuff, Health and Environmental Hazards of Synthetic Dyes.				EVALUATE	, UNDERSTA	ND	
CO4:	Learner will be able to learn application of dyes, different dyestuff industries.			S,	EV	'ALUATE		

Cours	e Code:	USACDD5P1	Class:	TYBSC (chemistry)	Semester:	V
Course Name: Applied Component (Drugs & Dyes) Practical							
Cours	Course Objectives:						
1.	To do synthesis of various commercial dyes as per pharmacopeia						
2.	To make useful arrangements for synthesis of drugs and dyes.						
3.	To apply back titration to quantify ibuprofen content in a pharmaceutical formulation.						
4.	To develop skil	ls to synthesize a dye.					

Course	Outcome:	Level of Blooms Taxonomy
CO1:	Learner will be able to do synthesis of various commercial dyes as per pharmacopeia.	UNDERSTAND, APPLY
CO2:	Learner will be able to make useful arrangements for synthesis of drugs and dyes.	UNDERSTAND, APPLY
CO3:	Learner will be able to apply back titration to quantify ibuprofen content in a pharmaceutical formulation.	UNDERSTAND, APPLY
CO4:	Learner will be able to develop skills to synthesize a dye.	CREATE

Course Code: USACDD6P1 Class: TYB		TYBSC ((chemistry)	Semester:	VI		
Course	e Name:	Applied Component (I	Orugs &	Dyes) Pra	actical		
Course	Course Objectives:						
1.	1. To perform an O-methylation reaction and characterize the product						
2.	To synthesize paracetamol from a starting material						
3.	To perform a multi-step synthesis of a complex organic molecule and characterize its properties.				eits		
4.	To read pharma	acopeia and to write mo	onograp	hs of dru	gs.		
Course	e Outcome:				Level of Bloo	m's Taxonor	my
CO1:		e to perform an O-metl aracterize the product	hylation		UNDERSTAND, APPLY		Y
CO2:	Learner will able to synthesize paracetamol from a UNDERSTAND, APPLY starting material			Y			
CO3:		able to perform a multi ganic molecule and cha			UNDERS	STAND, APPLY	Y

UNDERSTAND, APPLY

properties.

write monographs of drugs.

CO4:

Learner will be able to read pharmacopeia and to

Subjects Offered by the Institute First Year – Bachelor of Science				
Sr. No. Semester – I Sr. No. Semester – II				
1	Plant Diversity I	1	Plant Diversity I	
2	Form and Function I	2	Form and Function I	

Subjects Offered by the Institute						
Second Year – Bachelor of Science						
Sr. No. Semester – III Sr. No. Semester – IV						
1	Plant Diversity II	1	Plant Diversity II			
2	Form and Function II	2	Form and Function II			
3	Current Trends in Plant Science I	3	Current Trends in Plant Science I			

Subjects Offered by the Institute					
Third Year – Bachelor of Science					
Sr. No. Semester – V Sr. No. Semester – VI					
1	Plant Diversity III	1	Plant Diversity III		
2	Plant Diversity IV	2	Plant Diversity IV		
3	Form and Function III	3	Form and Function III		
4	Current Trends in Plant Science II	4	Current Trends in Plant Science II		

FACULTY OF COMMERCE – UNDERGRADUATE

 Program Name:
 Bachelor of Science

 Assessment:
 College
 Pattern:
 100 Marks

 Objectives & Outcome Framed by:
 Institutes

 Syllabus Copy Link:
 https://archive.mu.ac.in/syllabus/4.23%20Botany%20.pdf

 Department
 Botany

Course Code: USBO101 Class: FYBSC Semester: I
Course Name: Plant Diversity - I

- To Grasp the Basic Concepts and Principles of Botany, Including Plant Anatomy, 1.
 Physiology, Genetics, Evolution, and Ecology.
- 2. To Identify the Major Plant Groups and Understand their Characteristics and Life Cycles.
- 3. To Classify Plants Based on their Morphological and Anatomical Features.
- 4. To Understand the Interactions Between Plants and their Environments.

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learner will be able to Understand the Structure and	Understand
CO1.	Function of Plant Cells, Tissues, and Organs.	Officerstatio
CO2:	Learner will be able to Identify the Major Plant Groups	Understand
CO2.	and Understand their Characteristics and Life Cycles.	Onderstand
	Learner will be able to Gain Hands – On Experience	
CO3:	with Laboratory Techniques, Including Microscopy,	Understand
	Staining, and Dissection of Plant Material.	
	Learner will be able to Develop Field Skills such as	
CO4:	Plant collections, Identification, and Ecological	Understand
	Surveying.	

Course	e Code:	USBO201	Class:	FYBSC	Semester:	Ш
Course Name:		BOTANY				
Course	e Objectives:					
1.	To Classify Plants Based on their Morphological and Anatomical Features.					
2.	To Develop Skills in using Dichotomous keys and other Tools for Plant Identification.				on.	
3.	To Understand the Importance of Medicinal Plants.					
4.	To Comprehend the Processes of Photosynthesis, Respiration, and Transpiration.					
5.	To Develop Fie	ld Skills such as Plant Co	llection,	Identification, and Eco	ological Surve	ying.

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learner will be able to understand the Classification of Plants Based on their Morphological and Anatomical Features.	Understand
CO2:	Learner will be able to Create Dichotomous Keys and other tools for Plant Identification.	Create
CO3:	Learner will be able to understand the role of medicinal plants in maintaining biodiversity and in health issues.	Understand
CO4:	Learner will be able to understand the Processes of Photosynthesis, Respiration, and Transpiration.	Understand
CO5:	Learner will be able to understand Ecosystems, Plant Communities, and the role of Plants in Ecological Processes.	Understand

Course	Code:	USBO301	CLASS	SYBSC	Semester:	Ш		
Course Name:		BOTANY						
Course Objectives:								
	Learner will be	able to Identify and C	lassify M	ajor Plant Groups suc	ch as Bryoph	ytes,		
1.	Pteridophytes,	Pteridophytes, Gymnosperms, and Angiosperms, Understanding their Evolutionary						
Relationships.								
	Learner will be able to Understand the Dynamic Interactions Between Plants and their							
2.	Environment, Including Principles of Plant Ecology such as Community Dynamics and							
	Ecosystem Processes.							
3.	Learner will be	e able to Analyze How Environmental Factors Influence Plant Growth and				and		
Distribution.								
4.	Learner will be	able to Apply Genetic N	lodificatio	on and Biotechnology	Concepts to F	Plant		
т.	Science, Consid	ering Ethical and Ecolog	gical Impl	ications.				

Course	e Outcome:	Level of Bloom's Taxonomy	
CO1:	To understand the evolutionary relationship among	Understand	
CO2:	the plant groups.	Onacistana	
	To understand the principles of plants, ecology		
CO2:	including community dynamics and ecosystem	Understand	
	process.		
CO3:	Analyze the effect of environmental factors on plant	Understand	
000.	growth and distribution.	onacistana	
CO4:	Understand the principles of plant genetics including	Understand	
	inheritance patterns and gene expression.	onacistana	

Course	e Code:	USBO401	Class:	SYBSC	Semester:	IV	
Course	e Name:						
Course	Course Objectives:						
1.	1. To Identify Common Plant Diseases and Understand their Causative Agents.						
2.	To Describe an	d Analyze Plant Defens	e Mecha	inisms Against Pathoge	ens and Princ	iples	
۷.	of Disease Man	agement and Control.					
3.	To Perform Esse	ential Laboratory Techn	iques, Re	elated to Plant Anatom	y, Physiology	, and	
J .	Genetics includ	ing the use of microsco	pe and o	other scientific equipm	ent.		
4.	To conduct and study the fieldwork and analyze the plant communities and ecosysten					stem	
	in their natural	habits.					
5.							

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learner will be able to identify common plant diseases and understand their causes.	Understand
CO2:	Learner will be able to study the plant defense mechanism against pathogen.	Understand
CO3:	Learner will be able to perform the laboratory techniques related to plants anatomy, physiology and genetics.	Understand
CO4:	Learner will be able to collect, analyze and interpret scientific data.	Understand

Course	e Code:	USBO501	CLASS	TYBSC		Semester:	V	
Course	e Name:	BOTANY						
Course	e Objectives:							
1.	To Understand	Plant Structure and Fu	nction					
2.	To Identify and Classify plant species based on morphological characteristics.							
3.	To study the ec	ological roles of plants	within va	arious ec	osystems.			
4.	To understand	Plant Genetics and Biot	technolog	gy				
Course	e Outcome:				Level of Bloo	oms Taxonon	าง	
	Plant Physiolog	gy – To understand th	ne funda	mental				
	processes in	plants, including	photosyr	nthesis,				
CO1: respiration, transpiration and nutrient uptake and will				and will	Und	derstand		
be able to explain how these processes contrib								
	plant growth ar	nd development.						
	Taxonomy and	Systematics – To class	sify and i	dentify				
CO2:	various plant sp	pecies using morpholog	ical and	genetic	Und	derstand		
	characteristics.							
	Ecology and Er	nvironmental Botany –	To anal	yze the				
	interactions be	tween plants and thei	r enviro	nments				
CO3:	including ecosy	ystem dynamics, plant	t adapta	tion to	Understand			
		rironments and the	•	ct of				
		changes on plant biodi	·					
		Biotechnology – To co	·					
		plant genetics and be						
CO4:		chnological techniques		•	nt Understand			
		as genetic engineer	ing and	tissue				
	culture.							

Course	e Code:	USBO601	CLASS	TYBSC	Semester:	VI
Course	e Name:	BOTANY				
Course	e Objectives:					
1.	To develop Res	earch and Analytical ski	ills.			
2.	To study Plant-Pathogen Interactions					
3.	To Explore the	role of Plants in Climate	e regulation	ı		
4.	To develop Pra	ctical skills in Horticultu	re and Cro	p Management		
				Le	evel of Bloom	าร

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learner will be able to evaluate the economic importance of plants, including their uses in plant science, such as genetic engineering and tissue culture. Sustainability and Conservation — To understand the principles of plant conservation, sustainable agriculture and the role of plants in maintaining ecological balance and biodiversity.	Understand
CO2:	Learner will be able to Understand plant defense mechanisms against pathogens. Identify common Plant diseases and their impacts. Learn and apply integrated pest management strategies.	Understand
CO3:	Learner will be able to Analyze the role plants play in carbon sequestration. To understand the effect of deforestation and reforestation on climate. And evaluate plant species for climate change mitigation.	Analyze
CO4:	Learner will be able to Gain hands-on experience in plant cultivation techniques. Learn soil management, irrigation and pest control. To understand and practice organic and sustainable farming methods.	Understand

Subjects Offered by the Institute						
	First Year – Bachelor of Science (Mathematics)					
Sr. No.	Semester – I	Sr. No.	Semester – II			
1.	Calculus I	1	Calculus II			
2.	Algebra I	2.	Discrete Mathematics			

Subjects Offered by the Institute						
Second Year – Bachelor of Commerce Sr. No. Semester – III Sr. No. Semester – IV						
31.140.	Jeniestei – III	31.140.	Semester – IV			
1	Calculus III	1	Multivariable Calculus I			
2	Linear Algebra I	2	Linear Algebra II			
3	Ordinary Differential Equations	3	Numerical Methods (Elective A)			

Subjects Offered by the Institute						
Third Year – Bachelor of Commerce						
Sr. No.	Sr. No. Semester – VI Sr. No. Semester – VI					
1	Multivariable Calculus II	1	Basic Complex Analysis			
2	Group Theory	2	Ring Theory			
3	Topology of Metric Spaces	3	Topology of Metric Spaces & Real Analysis			
4	Graph Theory (Elective C)	4	Graph Theory and Combinatorics (Elective C)			

FACULTY OF SCIENCE – UNDERGRADUATE

Program Name:	Bachelor of Science			
Assessment:	College	Pattern:	75 : 25	
Objectives & Outcome Framed by:	Institute			
Syllabus Copy Link:	https://mu.ac.in/wp-content/uploads/2021/01/4.106-FY-BScBA Maths.pdf			
Department	B.Sc.			

Cour	rse Code:	USMT101	Class:	FYBSC	Semester:	I
Cour	Course Name: Calculus I					
Cour	Course Objectives:					
1.	To gain Knowle	edge of fundamental cor	ncepts o	f real numbers.		
2.	To verify the value of the limit of a function at a point using the definition of the limit,			imit,		

analyze and interpret the uniqueness of limits in a convergent sequence.

To solve first-order and first-degree differential equations, utilize integrating factors for non-exact equations.

Course	e Outcome:	Level of Blooms Taxonomy
	Learner will be able to recall and define the order	
CO1:	properties of the Real Number System (R) and examine	Understand and Analyze
	AM-GM and Cauchy-Schwarz Inequalities.	
	Learners will analyze and interpret convergence	
CO2:	properties and explain the uniqueness of limits in	Understand and Analyze
	convergent sequences.	
	Learners will solve first-order and first-degree	
CO3:	differential equations and utilize integrating factors	Apply
	for non-exact equations.	

Course	e Code:	USMT201	Class:	FYBSC	Semester:	II	
Course Name: Calculus II							
Course	e Objectives:						
1.	To understand	differentiation and fund	damenta	l theorem in differenti	ation and var	rious	
	rules.	ıles.					
2.	To find higher order derivatives, extreme values of function and apply the Leibnitz rule					z rule	
	to solve proble	ms					
3.	To solve problems based on MVT, Rolls theorem and limit problems using L' Hospital's						
	rule·						
_							

Course	Outcome:	Level of Bloom's Taxonomy
CO1:	Learners will define differentiation and apply fundamental theorems for solving problems related to differentiation.	Understand and Analyze
CO2:	Learners will apply the Leibnitz rule to solve n th order derivative problems and examine the first and second derivative tests to determine extreme values of functions.	Apply and Analyze
CO3:	Learners will apply the Mean Value Theorem, Rolle's Theorem, and L'Hôpital's Rule to solve diverse calculus problems	Apply

Course Code:	USMT102	Class:	FYBSc	Semester:	I
Course Name:	Algebra I				

- To provide an understanding of fundamental concepts in number theory and the 1.
 Fundamental Theorem of Arithmeticand congruence.
- To understand the foundational concepts in set theory and equivalence relations, 2. including relations, functions and binary operations.
- 3. To develop a comprehensive understanding of polynomials and their properties.

Course	e Outcome:	Level of Bloom's Taxonomy
	Learners will be able to understand and apply	Understand
CO1:	fundamental principles in number theory,thus	Apply
	enhancing their reasoning and problem-solving skills.	Analyze
	Learners will be proficient in defining and analyzing	Understand
CO2:	relations and functions and competence in	Apply
	identifying and applying properties of functions.	Analyze
	Learners will be able to demonstrate understanding	Understand
CO3:	of polynomials, enabling them to solve related	Apply
	problems effectively.	Analyze

Course	e Code:	USMT202	Class:	FYBSC		Semester:	П
Course	e Name:	Discrete Mathematics					
Course	e Objectives:						
1.	To understand	set theory and learn Sti	rling Nur	mbers of	the Second K	ind and	
- .	Pigeonhole Principle applications in mathematics.						
2.	To apply permu	ıtation and combinatior	n princip	les to sol	ve diverse pro	oblems and to	0
۷.	evaluate combinatorial identities.						
3.	To analyze permutations of objects and solve recurrence relations to obtain its solutions						
3.	to enhance think	king and solving skills.					
_	<u> </u>						

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learners will be able to analyze sets and apply combinatorial principles enabling them to solve a wide range of mathematical problems.	Apply Analye
CO2:	Learners will be able to demonstrate the ability to apply permutations and combinations and derive formulas for non-negative integer solutions of equations	Apply Analye
CO3:	Learners will be able to evaluate permutations effectively and develop expertise in solving diverse recurrence relations.	Apply Evaluate

FACULTY OF SCIENCE – UNDERGRADUATE

Program Name:	Bachelor of Science		
Assessment:	College Pattern: 75:25 Marks		
Objectives & Outcome Framed by:	Institute		
	https://mu.ac.in/wp-content/u	ploads/2022	1/10/6.17-AAMS-UG-97-
Syllabus Copy Link:	Mathematics-CBCS.pdf		
Department	B.Sc (Mathematics)		

Course Code:	USMT.301	Class:	SYBSC	Semester:	Ш
Course Name:	Calculus III				

- 1. To be able to define and analyze the infinite series, its convergence & divergence.
- 2. To be able to recall and interpret the Riemann integrability of real valued functions.
- 3. To be able to apply the Riemann integrations and improper integrals.

.	To be able to apply the memory message and make	- p
Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to recall the infinite series and apply the different tests to check its convergence and divergence.	Remember Apply
CO2:	Learners will be able to analyze the idea and properties of Riemann integrability of real valued functions.	Understand Analyze
CO3:	Learners will be able to solve examples on applications of Riemann integrations and also be able to interpret and solve the examples on Gamma and Beta functions.	Apply Evaluate

Course Code:	USMT 401	Class:	SYBSC	Semester:	IV
Course Name:	Multivariable Calculus	1			

- 1. To define the properties of real and vector valued functions of several variables.
- 2. To define the differentiability of scalar fields and its basic properties.
- 3. To apply differentiation of scalar field and vector field.

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learners will be able to analyze properties, limits and continuity of real and vector valued functions of several variables, Directional derivative.	Understand Analyze
CO2:	Learners will demonstrate differentiability of scalar fields, Euler's theorem, gradient and mixed partial derivatives.	Understand Evaluate
CO3:	Learners will analyze and apply differentiation of scalar field and vector field to find maxima and minima.	Analyze Apply

Course Code:	USMT302	Class:	SYBSC	Semester:	Ш
Course Name:	Linear Algebra - I				

- 1. To enable students to solve the System of Equations and Matrices efficiently.
- 2. To understand vector spaces over \mathbb{R} and to analyze dimensions of vector spaces.
- 3. To comprehend determinants and to analyze linear equations and matrices.

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to solve linear equations and	Apply
CO1.	apply elementary operations with proficiency.	Evaluate
CO2:	Learners will be able to understand vector space and	Understand
CO2.	determine dimensions of a vector space.	Apply
CO3:	Learners will be able to solve determinants and relate	Apply
co3.	solutions of linear equations to matrix properties.	Evaluate

Course Code:	USMT402	Class:	SYBSC	Semester:	IV
Course Name:	Linear Algebra - II				

- 1. To analyze and apply fundamental concepts of linear transformations.
- 2. To apply the concept of inner product space and orthogonality to foster solving skills.
- 3. To understand eigen values, eigen vectors, diagonalization and their properties.

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	To demonstrate proficiency in solving problems of	Apply
CO1.	linear transformations.	Evaluate
	To apply inner product space concepts to solve	Understand
CO2:	problems involving orthogonality.	Apply
		Evaluate
CO3.	To develop problem-solving skills with eigenvalues,	Apply
CO3:	eigenvectors and diagonalization.	Evaluate

Course	e Code:	USMT303	Class:	SYBSC		Semester:	Ш
Course	e Name:	Ordinary Differential E	quation	S			
Course	Objectives:						
1.	To understand	general n-th Order LD	E, solve	Higher	Order Homo	geneous LDE	and
1.	examine the pr	operties of the differen	tial oper	ator.			
2.	To apply the ex	istence and uniqueness	theore	m and to	understand t	the Wronskia	n for
۷.	homogeneous linear systems.						
3.	To apply Taylo	ylor's Series Method, Picard's method, Euler's method and Runge-Kutta					
٥.	method of seco	method of second order.					
Course	e Outcome:				Level of Bloo	om's Taxonor	ny
	Learners will ur	nderstand the fundame	ntals of	solving			
CO1:	general n-th ord	der LDE and utilize the c	oncept o	flinear	Understand and Apply		
CO1.	independence a	and Wronskian for homo	ogeneou	s linear			
	systems.						
	Learners will a	apply the existence a	nd uniq	ueness			
CO2:	theorem and	analyze homogene	ous sy	stems,	Understa	and, Apply an	d
CO2.	understand the	e significance of the V	Vronskia	n, and	А	nalyze	
	solve non-home	ogeneous systems.					

Understand and Apply

Learners will develop skills in solving initial value

problems for first-order ODE and understand how

each technique works in terms of convergence.

CO3:

Course	e Code:	USMT403A	Class:	SYBSC	Semester:	IV
Course Name: Numerical Methods (Elective A)						
Course Objectives:						
1.	To understand	how to measure errors	and solv	e problems using Itera	tion Methods	s and
	solve algebraic and transcendental equations.					
2.	To understand and apply interpolation techniques, grasp finite difference operators,				itors,	
	and Numerical Integration.					
3.	To understand and apply the LU Decomposition Method, and Gauss-Seidel Ite					ative
J.	method for solv	ving linear systems of e	quations			

Course	Outcome:	Level of Bloom's Taxonomy
CO1:	Learners will develop an understanding of error	Understand, Apply, and
CO1.	measurement techniques and iteration methods.	Analyze
	Learners will develop skills in interpolation,	
CO2:	understand differences, and excel in practical	Understand and Apply
	numerical integration.	
	Learners will use LU Decomposition and Gauss-Seidel	
CO3:	for solving systems and applying Jacobi's for	Understand and Apply
	eigenvalue problems.	

FACULTY OF SCIENCE – UNDERGRADUATE

Program Name:	Bachelor of Science			
Assessment:	University Pattern: 75:25 Marks			
Objectives &	Institute			
Outcome Framed by:	institute			
Syllabus Copy Link:	https://mu.ac.in/wp-content/uploads/2022/06/6.9-R-Syllabus-			
T.Y.B.Sc. B.A. Mathematics.pdf				
Department	B.Sc (Mathematics)			

Course	e Code:	USMT.501	Class:	TYBSC		Semester:	V
Course	e Name:	Multivariable Calculus	II				
Course	e Objectives:						
1.	1. To be able to analyze and apply multiple integrals.						
2.	To be able to d	efine and interpret the	Line inte	grals of	a vector field.		
3.	3. To be able to interpret and apply the surface integrals.						
Course Outcome:			Level of Bloo	m's Taxonor	ny		
CO1:		e able to recall the information of the contract tests to check its contract tests to check its contract the contract tests.				nember Apply	
CO2:	properties of	oe able to analyze an fline integrals, apector fields & Green's th	oplicatio	ns of	Understand f Analyze		
602		pe able to analyze and			А	nalyze	

Evaluate

CO3: surface integrals, Stoke's theorem, and Gauss

divergence theorem.

Course Code:	USMT 601	Class:	TYBSC	Semester:	VI
Course Name:	Basic Complex Analysi	S			

- 1. To analyze the complex-valued functions.
- 2. To define and evaluate complex line integral and Cauchy integral formula.
- 3. To analyze Complex power series, Laurent series, and isolated singularities.

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learners will be able to analyze properties, limits, continuity, differentiability, and analyticity of complex-valued functions.	Understand Analyze
CO2:	Learners will be able to interpret and evaluate the complex line integral, Cauchy integral formula, and hyperbolic functions.	Understand Evaluate
CO3:	Learners will be able to analyze and demonstrate Complex power series, Laurent series, and isolated singularities.	Understand Analyze

Course	e Code:	USMT502	Class:	TYBSC		Semester:	V
Course	e Name:	Group Theory					
Course	Course Objectives:						
1.	To gain the kno	wledge of important m	athemat	ical cond	epts in Group	theory.	
2.	To Extend group structure to finite permutation groups (Cayley Hamilton Theorem) and) and		
۷.	group of symmetries.						
3.	To apply and analyze the properties of cyclic groups and solve equations within these				hese		
5.	structures.						
Course	e Outcome:				Level of Bloo	om's Taxonor	ny

Cours	e Outcome:	Level of Bloom's Taxonomy
CO1:	Students will have a working knowledge of important mathematical concepts in Group theory.	Understand and Apply
CO2:	Learners will Extend group structure to finite permutation groups and groups of symmetries.	Understand and Apply
CO3:	Learners will apply and analyze the properties of cyclic groups, identify generators, determine orders, and solve equations within these structures.	Apply

Course Code:	USMT602	Class:	TYBSC	Semester:	VI
Course Name:	Ring Theory				

- 1. To gain the knowledge of important mathematical concepts in Ring theory.
- 2. To Study ideals and concepts related to ideals.
- 3. To Study various integral domains in ring.

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Students will be able to understand fundamental concepts of ring theory, including definitions, properties, and examples.	Understand and Apply
CO2:	Students will understand the connection and transition between previously studied mathematics and more advanced mathematics.	Understand and Apply
CO3:	The students will actively participate in the transition of important concepts such as homomorphisms & isomorphisms from discrete mathematics to advanced abstract mathematics.	Apply

Course	e Code:	USMT 503	Class:	TYBSC		Semester:	V
Course Name: Topology of Metric Spaces							
Course	e Objectives:						
1.	To explore met	ric spaces, subspaces, a	nd open	set prop	erties.		
2.	To understand	sequences, converger	ice, and	comple	teness in me	tric spaces, a	apply
۷.	Cantor's Interse	ection Theorem and de	nsity of r	ational n	umbers.		
3.	To understand	the concept of compac	tness in i	metric sp	aces.		
Course	e Outcome:				Level of Bloc	m's Taxonor	ny
	Learners will	understand the princi	ples of	metric			
CO1:		understand the princi analyze the concept	•		Understand	d and remem	ber
CO1:	spaces and a	·	•		Understand	d and remem	ber
CO1:	spaces and a	analyze the concept	of dis	tances,	Understand	d and remem	ber
CO1:	spaces and a boundaries, clo Learners will un	analyze the concept osures, and limit points.	of dis	tances,		d and remem	
	spaces and a boundaries, clo Learners will un	analyze the concept osures, and limit points. Inderstand the principle and completeness, ap	of dis	tances,			

Understand and remember

in metric spaces, properties of compact sets, and

relate equivalent statements in R.

CO3:

Course	e Code:	USMT 603	Class:	TYBSC		Semester:	VI
Course	e Name:	Topology of Metric S	Spaces and	l Real An	alysis		
Course Objectives:							
1.	To recall con	tinuity through eps	lon-delta	definitio	on, sequence	es, and alge	braic
1.	properties, unit	form continuity, contr	action ma	pping, ar	nd the fixed p	oint theorem	
2.	To analyze se	parated sets, conne	ctedness,	and app	olication in s	subsets of R	and
۷.	connected space	ces.					
	To Understand	d pointwise and uni	form con	vergence	in sequenc	es of real-va	alued
	3. functions, explore series convergence, and analyze properties of uniform convergence						
3.	functions, explo	ore series convergenc	e, and ana	lyze prop	erties of unif	form converge	ence.
3.	functions, explo	ore series convergenc	e, and ana	lyze prop	erties of unif	form converg	ence.
	functions, explo	ore series convergenc	e, and ana	lyze prop		form convergo om's Taxonor	
	e Outcome:	ore series convergenc				_	
Course	e Outcome: Learners will re		-delta def	inition,	Level of Bloo	om's Taxonor	
	e Outcome: Learners will response characters	emember the epsilor	-delta def	inition,	Level of Bloo	_	
Course	e Outcome: Learners will response characters	emember the epsilor racterization, algebra form continuity, cont	-delta def	inition,	Level of Bloo	om's Taxonor	
Course	Learners will resequence characteristics, unit	emember the epsilor racterization, algebra form continuity, cont	-delta def ic proper raction m	finition, ties of apping,	Level of Bloo	om's Taxonor	
Course	Learners will resequence characteristics, unit and the fixed p	emember the epsilor racterization, algebra form continuity, contoint theorem.	delta deficing proper raction menuotion pts of seg	finition, ties of apping,	Level of Bloo	om's Taxonor	
Course CO1:	Learners will resequence characteristics and the fixed particular sets, connected	emember the epsilor racterization, algebra form continuity, contoint theorem. ummarize the conce	delta deficing proper raction menuotion pts of seg	finition, ties of apping,	Level of Bloo	om's Taxonor	
Course CO1:	e Outcome: Learners will resequence characteristics continuity, unit and the fixed particular will sets, connected application in continuity.	emember the epsilor racterization, algebra form continuity, contoint theorem. ummarize the concedures, and subsets in	i-delta defice proper raction meter of segon R, and p	Finition, ties of apping, parated ractical	Level of Bloo	om's Taxonor	

comprehend the representation and properties of

classical functions defined by power series.

Understand and Apply

CO3:

Course	e Code:	USMT5C4	Class:	TYBSc	Semester:	V
Course	urse Name: Graph Theory(Elective C)					
Course	e Objectives:					
1.	To provide a co	mprehensive understar	nding of	basic graph theory cor	ncepts.	
2.	To facilitate un	derstanding of trees and	d tree al	gorithms Dijkstra's, BF	S, DFS, MST a	and
۷.	Huffman coding.					
3.	To enable students to comprehend advanced graph theory concepts of Eulerian and					
3.	Hamiltonian graphs with their applications.					

Course	Outcome:	Level of Bloom's Taxonomy
	Learners will demonstrate understanding of	Understand
CO1:	fundamental graph theory concepts, special graph	Apply
	classes, and isomorphic graphs and properties.	
	Learners will be able to demonstrate different types	Understand
CO2:	of algorithms including Dijkstra's, BFS, DFS, MST and	Apply
	Huffman coding.	Analyze
	Learners will be able to understand the concept of	Understand
CO3:	Eulerian graphs and Hamiltonian graphs and Describe	Apply
	real-world applications of graph theory.	

Course	e Code:	USMT6C4	Class:	TYBSc	Semester:	VI
Course	Course Name: Graph Theory and Combinatorics (Elective C)					
Course	Course Objectives:					
1.	To engage students in advanced graph coloring concepts, and the application of key				ey	
1.	theorems like Whitney's theorem.					
2.	To explain plan	ar graph properties, Eu	ler's forr	nula, duality, Platonic s	solids and	
۷.	network flow a	pplications.				
3.	To delve into the	ne broad applications of	f the con	nbinatorics, and Hall's	theorem for S	SDR.

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learners will understand graph coloring, chromatic number, chromatic polynomials, vertex and edge connectivity, and Whitney's theorem.	Understand
CO2:	Learners will understand planarity properties, Euler's formula, geometric duals in planar graphs, and graph theory applications in network flows.	Understand
CO3:	Learners will grasp SDR, matching theory applications and various concepts of combinatorics.	Understand

Subject	Subjects Offered by the Board of Studies, Zoology University of Mumbai				
First Ye	ar – Bachelor of Science				
Sr.	Semester – I	Sr.	Semester – II		
No.	Semester – II No.				
1	Wonders of Animal World,	1	Ecology and Wildlife Management		
_	Biodiversity and its Conservation	_	Ecology and Whalle Management		
2	Instrumentation and Animal	2	Nutrition, Public Health And		
2	Biotechnology	2	Hygiene		

Subjects Offered by the Board of Studies, Zoology University of Mumbai				
Second Year – Bachelor of Science				
Sr.	Semester – III	Sr.	Semester – IV	
No.		No.		
			Origin and Evolution of Life,	
	Fundamentals of Genetics,		Population Genetics and	
1	Chromosomes and Heredity,	1	Evolution, Scientific Attitude,	
	Nucleic acids		Methodology, Scientific Writing	
			and Ethics in Scientific Research	
	Nutrition and Excretion,			
	Respiration and Circulation,		Cell Biology, Endomembrane	
2	Control and Coordination of Life	2	System ,Biomolecules	
	Processes, Locomotion and		System, biomolecules	
	Reproduction			
	Ethology, Parasitology, Economic		Comparative Embryology, Aspects	
3		3	of Human Reproduction, Pollution	
	Zoology		and its effect on organisms	
	Maintenance of Aquarium,		Dairy Industry, Sericulture and	
4	Agricultural and Household pests	4	·	
	and their control, Amazing animals		Aquaculture	

Subjects Offered by the Board of Studies, Zoology University of Mumbai					
Third Year – Bachelor of Science					
Sr. No.	Semester – V	Sr. No.	Semester – VI		
1	Levels of organization, Taxonomy of Phylum Protozoa to Phylum Nemathelminthes, Taxonomy of Phylum Annelida to Phylum Echinodermata, Type study: Sepia	1	Minor Phyla and Protochordata, Taxonomy – Pisces and Amphibia, Taxonomy – Reptilia, Aves and Mammals, Type study: Shark		
2	Basic Hematology, Applied Hematology ,Basic Immunology, Applied Immunology	2	Enzymology ,Homeostasis (Temperature and Ionic regulation) , Histology , General Pathology		
3	Molecular Biology, Genetic engineering, Human Genetics, Tissue Culture	3	Zoogeography, Toxicology, Biostatistics, Bioinformatics		
4	Integumentary system and derivatives, Endocrine glands and, Human Osteology, Experimental and Chick Embryology	4	Environment management,Wildlife management,Bioethics, Bioprospecting and Zoopharmacognosy, General Entomology		

FACULTY OF SCIENCE – UNDERGRADUATE				
Program Name:	Bachelor of Science			
Assessment:	College	Pattern:	100 Marks	
Objectives &	Board of Studies, Zoology University of Mumbai			
Outcome Framed by:	Board of Studies, Zoology Offiversity of Multipal			
Collabora Camo Limbo	http://old.mu.ac.in/wp-			
Syllabus Copy Link:	content/uploads/2016/06/4.70 Zoology fybsc.pdf			
Department	Zoology			

Course	e Code:	USZO101	Class:	FYBSC	Semester:	I
Course	Course Name: Wonders of Animal World, Biodiversity and its Conservation					
Course	e Objectives:					
1.	To take learner	s through a captivating	journey	of hoarded wealth of	marvellous ar	nimal
1.	world.					
2.	To orient learners about the rich heritage of Biodiversity of India and make them					them
۷.	understand the	e significance of its cons	ervation			
2	To teach learne	ers about innovative and	d novel w	ork of scientists in the	e field of biolo	ogical
3. sciences.						

Course	e Outcome:	Level of Bloom's Taxonomy
CO1	Curiosity will be ignited in the minds of learners, to know more about the fascinating world of animals	Understand
COI	which would enhance their interest and love for the subject of Zoology.	
CO2:	Learners would appreciate treasure of Biodiversity, its importance and hence would contribute their best for its conservation	Apply
CO3:	Minds of learners would be impulsed to think differently and would be encouraged ipso factor to their original crude ideas from the field of biological sciences.	Create

Course Code:		USZO201	Class:	FYBSC		Semester	II	
Course Name: Ecology and Wildlife Management								
Course	Course Objectives:							
1.	To facilitate the learning of population ecology, its dyn			, its dyna	ımics and regu	ulatory factor	rs are	
	important for it							
2.	To impart know	wledge of different cor	nponent	s of the	ecosystem ar	nd educate a	bout	
	essentials of co	existence of human be	ings with	all othe	r living organi	sms.		
	To enlighten le	arners about the curre	nt status	of wild	ife conservati	on in India i	n the	
3.	light of guidelin	nes from different relev	ant gove	erning ag	encies vis-à-v	is the advers	ity of	
	poaching and b	iopiracy.						
Course Outcome:			Level of Bloo	-				
	. Outcome.				Level of bloo	ms Taxonom	ıy	
		d allow learners to st	udy abo	out the	Level of bloo	ms Taxonom	ıy	
CO1	This unit woul	d allow learners to st animal population, s	•				ıy	
CO1.	This unit woul		specific	factors		derstand	у	
CO1.	This unit woul	animal population, sowth and its impact on	specific	factors			ıy.	
CO1.	This unit would nature of the affecting its ground of other life for	animal population, sowth and its impact on	specific the pop	factors ulation			ny .	
CO1.	This unit would nature of the affecting its ground of other life for Learners will g	animal population, sowth and its impact on ms.	the pop	factors ulation ndence			ny .	
	This unit would nature of the affecting its ground of other life for Learners will go and interaction	animal population, sowth and its impact on ms. rasp the concept of in	the popterdepe	factors ulation ndence	Und	derstand	Y	
CO1.	This unit would nature of the affecting its ground of other life for Learners will go and interaction factors in the	animal population, sowth and its impact on ms. rasp the concept of in of physical, chemical	the pop terdepe and bid lead to	factors ulation ndence blogical better	Und		Y	

Judge

for conservation of all flora and fauna.

photography and ecotourism

CO3.

Learners would be inspired to choose career options

in the field of wildlife conservation, research,

Course	e Code:	USZO102	Class:	FYBSC	Semester	I		
Course	e Name:	Instrumentation and	Animal B	iotechnology				
Course	Course Objectives:							
	To make learne	ers aware of risks involv	ed in ha	ndling of different haz	ardous chem	icals,		
1.	sensitive (elec	trical/electronic) insti	uments	and infectious biol	ogical specir	mens		
	especially durin	especially during practical sessions in the laboratory						
2.	To acquaint lea	rners to the modern de	velopme	nts and concepts of Zo	ology highlig	hting		
	their applicatio	ns aiming for the bene	fit of hun	nan being				
3.	To provide all	learners a complete in	nsight ab	out the structure and	train them	with		
J.	operational skil	ls of different instrume	ents requ	ired in Zoology.				

Cours	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learners would work safely in the laboratory and avoid occurrence of accidents which will boost their scholastic performance and economy in use of materials/chemicals during practical sessions	Understand
CO2:	Learners would understand recent advances in the subject and their applications for the betterment of mankind; and that the young minds would be tuned to think out of the box	Knowledge.
CO3:	Students will be skilled to select and operate suitable Instruments for the studies of different components of Zoology of this course and also of higher classes including research.	Analysis

Course Code:		USZO 202	Class:	FYBSC		Semester	II	
Course Name: Nutrition, Public Health And Hygiene								
Course	Course Objectives:							
1.	To make learners understand the importance of a balanced diet and essential nutrients							
1.	of food at diffe	rent stages of life.						
	To impart kno	wledge about source,	quantu	m and	need for con	servation of	fast	
2.	depleting wate	r resources and essentia	als of ma	intaining	g proper sanita	ition, hygiene	e and	
	optimizing use	of electronic gadgets.						
3.	To educate lear	ners about causes, sym	ptoms ar	nd impac	t of stress rela	ted disorders	s and	
Э.	infectious disea	ases						
Course Outcome: Level of Bloom				m's Taxonon	าง			
	Healthy dietary	habits would be inculo	cated in	the life	fe			
CO1.	style of learner	s in order to prevent ris	k of deve	eloping	Rar	memher		
CO1.	health hazards	in younger generation	n due to	faulty	Remember			
	eating habits							
	Promoting o	ptimum conservation	n of	water,				
	encouragemen	ersonal						
CO2.	hygiene, optimum use of electronic gadgets, avoiding Analyse							
	addiction, thus	thus facilitating achievement of the goal of						
	healthy young India in true sense.							
	Learners will b	pe able to promptly re	ecognize	stress				
	related problems at initial stages and would be able to							
	adopt relevant solutions which would lead to a			I to a				
CO3.	O3. psychologically strong mind set promoting positive			ositive	Ev	aluate.		

attitude important for academics and would be able

to acquire knowledge of cause, symptoms and

precautions of infectious diseases.

FACULTY OF SCIENCE – UNDERGRADUATE			
Program Name:	Bachelor of Science		
Assessment:	College	Pattern:	100 Marks
Objectives & Outcome Framed by:	Board of Studies, Zoology University of Mumbai		
Syllabus Copy Link:	http://old.mu.ac.in/wp-content/uploads/2016/06/4.32-TYBScSem-V- VI-Syllabus-Final-9th-April-2018-26-April-2018-1-4.pdf		
Department	Zoology		

Course	e Code:	USZO301	Class:	SYBSC	Semester:	Ш		
Course Name:		Fundamentals of Ger	netics, Ch	romosomes and Here	dity, Nucleic a	cids		
Course	Course Objectives:							
	To introduce ba	asic terms of genetics						
1.	To develop con	ceptual clarity of Men	delian pri	nciples of inheritance				
	and other form	and other forms and pattern of inheritance						
	To familiarize t	he learners with the st	ructure, t	ypes and classification	of chromoso	mes.		
2.	To introduce the concept of sex determination and its types, sex influenced and sex-							
	limited genes							
	To introduce t	he learner to the cla	ssical ex	periments proving DN	NA as the ge	netic		
	material.							
3.	To introduce the learner to the structure of nucleic acids and the concept of central							
	dogma of mole	cular biology.						
	To familiarize t	he learner with the co	ncept of ${\mathfrak g}$	gene expression and re	egulation			

Course	e Outcome:	Level of Bloom's Taxonomy
	Learner will understand the concept of multiple	
CO1.	alleles, linkage and crossing over.	Understand
CO1.	Learner would comprehend and apply the principles	Onacrstana
	of inheritance to study heredity.	
CO2.	Learner will comprehend the structure of	Understand
CO2.	chromosomes and its types.	onderstand

	Learner will understand the mechanisms of sex	
	determination.	
	Learner would be able to correlate the disorders	
	linked to a particular sex chromosome.	
	Learner will understand the importance of nucleic	
CO3.	acids as genetic material.	Analyse
CO3.	Learner would comprehend and appreciate the	Analyse
	regulation of gene expressions.	

Course	e Code:	USZO401	Class:	SYBSC		Semester:	IV
Origin and Evolution of Life, Popul				, Popul	ation Genetic	s and Evolu	ition,
Course	e Name:	Scientific Attitude, I	Methodo	logy, Sc	ientific Writin	ng and Ethic	cs in
		Scientific Research					
Course	e Objectives:						
1.	To impart scien	tific knowledge about	how life	originate	ed on our plane	et	
	To develop an	understanding of gene	tic variab	ility with	hin a populatio	on and learn	as to
2.	how the change	e in the gene pool lead	s to evolu	ution of s	species		
3.	To inculcate scientific temperament in the learner						
Course Outcome: Level			Level of Bloo	ms Taxonom	У		
	Learner will an	alyse and critically vie	w the di	fferent			
CO1.	theories of evo	ution				nalyse	
	Learner will gai	Learner will gain insights into the origin of life.					
	Learner would	I understand the for	ces that	cause			
000	evolutionary ch	nanges in natural popul	ations.				
CO2.	Learner will	be able to disting	guish be	etween	Understand		
	microevolution	, macroevolution and r	nega evo	lution			
	The learner we	ould develop qualities	such as	critical			
	thinking and ar	nalysis.					
CO3.	The learner	will imbibe the skil	ls of so	ientific	Und	derstand	
	communication	n and will understa	nd the	ethical			

aspects of research

Course	e Code:	USZO302	Clas	ss:	SYBSC			Sen	nester:	Ш
Course	e Name:	Nutrition and	Excretion,	Resp	oiration	and	Circulat	ion,	Control	and
Course	: ivaille.	Coordination of	of Life Proces	ses,	Locomo	tion a	and Repi	odu	ction	
Course	e Objectives:									
1.	To introduce th	e concepts of p	hysiology of	nutr	ition, ex	cretio	on and o	smoı	regulatio	n
	To introduce th	e concepts of p	hysiology of	resp	iration a	and ci	rculatior	۱.		
2.	To expose the I	earner to variou	ıs respirator	y an	d circula	itory	organs ir	n diff	erent cla	isses
	of organisms									
3.		ne concepts of p	hysiology of	f con	itrol and	l coor	dinatior	, loc	omotion	and
C	reproduction.						l - C DI			
Course	e Outcome:					Leve	I OT BIOO	ms I	axonom	y
		understand the	_	•						
	of nutritional, excretory and osmoregulatory physiology in evolutionary hierarchy.									
CO1.		Understand rewords to correlate the habit and								
	habitat witl				and					
	osmoregulatory structures.									
	Learner would	understand the	increasing	com	plexity					
	of respiratory and circulatory physiology in									
CO2.	evolutionary hi	erarchy.					А	nalys	se	
	Learner will be	able to correlat	e the habit a	nd h	abitat	·				
	of animals with	respiratory and	l circulatory	orga	ns.					
	Learner would	understand the	process of c	ontr	ol and					
	coordination b	y nervous and	endocrine	regu	lation.					
CO3.	Learner would	be amazed b	y various l	ocon	notory		Und	derst	and	
	structures foun	d in the animal	kingdom.			Understand				
	Learner wou	•) V	arious					
	reproductive st	rategies presen	t in animals.							

Course	e Code:	USZO402	Class:	SYBSC	Semester:	IV	
Course	Course Name: Cell Biology, Endomembrane System,						
Course	Course Objectives:						
1.	To study the structural and functional organization of cells with an emphasis on nucleus, plasma membrane and cytoskeleton.						
2.	To acquaint the learner with ultrastructure of cell organelles and their functions						
3.	To give learners insight into the structure of biomolecules and their role in sustenance of life.						

Course	e Outcome:	Level of Bloom's Taxonomy
CO1.	Learner would acquire insight into the composition of the transport mechanisms adopted by the cell and its organelles for its maintenance and composition of cell	Remember
CO2.	Learner would understand the interlinking of the endomembrane system for functioning of cells. Learner would appreciate the intricacy of the endomembrane system.	Understand
CO3.	The learner will realize the importance of biomolecules and their clinical significance.	Knowledge

Course	e Code:	USZO303	Class:	S.Y.B.So	С.	Semester:	Ш
Course	Course Name: Ethology, Parasitology, Economic Zoology						
Course	e Objectives:						
1	To equip learner their environm	er with a sound knowle nent.	dge of ho	w anima	ls interact wit	h one anothe	r and
2	To enable the	learner to understand	different l	behaviou	ıral		
3	To acquaint the environment.	ne learner with the co	ncepts o	f parasit	ism and its r	elationship ii	n the
4	To introduce the	ne learner to modes of	transmis	sion of			
5		te information on ϵ nd dairy science.	conomic	aspects	s of animals	s like apicu	lture,
6	To encourage y	young learner for self-e	employme	ent			
Course	e Outcome:				Level of Bloo	oms Taxonom	У
CO1.	animal behave adaptations. Learner would	I gain insight into dif viour and their role be sensitized to the fe n social behaviour.	e in bio	ological	Re	member	
CO2.	epidemiologica humans and ta same. Learner would	ould understand al aspects of parasitake simple preventive reduced the life symptoms of the or	tes that measures cycle of	for the	Un	derstand	
CO3.	mankind and t Learner would husbandry.	gain knowledge on a he means to make the learn the modern tech	most of it	:. animal	A	Analyse	

Course	e Code:	USZOE1403	Class:	S.Y.B.So	C.	Semester:	IV
Comparative Embryology, Aspects of Earn and its effect on organisms			Human Repro	duction, Poll	ution		
Course	e Objectives:						
1	To acquaint the	e learner with key cond	epts of e	mbryolo	gy.		
2	To acquaint the	e learners with differer	nt aspects	of huma	an reproduction	on.	
3	To make them the concept of	aware of the causes of birth control.	infertilit	y, techni	ques to overc	ome infertility	y and
To provide a panoramic view of the impact of human activities leading to pollutio its implications.					ng to pollutior	n and	
Course	e Outcome:				Level of Bloc	oms Taxonom	У
CO1.	different types	e able to understand a of eggs and sperms. he able to acquire an of eggs and sperms	·		Un	derstand	
CO2.	Learners will able to understand human reproductive physiology Learners will become familiar with advances in ART and related ethical issues.				Kn	owledge	
CO3.	The learners will be sensitized about the adverse effects of pollution and measures to control it				Re	member	

FACULTY OF SCIENCE – UNDERGRADUATE						
Program Name:	Bachelor of Science					
Assessment:	College	Pattern:	100 Marks			
Objectives &	Board of Studies, Zoology University of Mumbai					
Outcome Framed by:	board of Studies, Zoology Offiversity of Multipal					
Cullabus Convilinte	http://old.mu.ac.in/wp-content/u	iploads/2016	/06/MScl ZooSyllabus-			
Syllabus Copy Link: Formatted_18Aug2019.pdf						
Department	Zoology					

Cours	se Code:	USZO501	Class:	TYBSC	Semester:	V			
Cours	se Name:	Taxonomy - Invertebr	ates and	Type Study					
Cours	se Objectives:								
1.	To introduce t	he principles of taxono	my and	modern system of cla	assification ir	ı the			
	animal kingdom with evolution point of view.								
2.	To comprehen	d the general characte	ers and c	classification of Kingdo	m Animalia	from			
2.	Porifera to Nematoda and specific characters of organisms belonging to these phyla.								
3.	To introduce ba	asic concepts of classific	ation up	to class in animal king	dom from ph	ylum			
3.	Annelida to Hemichordata and to familiarize with their characters.								
4.	To acquaint le	earners with the detail	s of Sep	oia as a representativ	e of invertel	orate			
4.	animals.								

Course	e Outcome:	Level of Bloom's Taxonomy
CO1.	Learners will apprehend the basis of classification and modern classification up to class of the lower invertebrate animals.	Understand
CO2.	The learners will be familiarized with classification up to phylum Nematoda along with their examples.	Create
CO3.	Students will get an idea of higher groups of invertebrate animal life, their classification and their peculiar aspects.	Evaluate

	Learners should have get an idea of general	
CO4.	characteristics and details of invertebrate animal	Knowledge
	systems.	

Course	e Code:	USZO601	Class:	T.Y.Bsc	Semester:	VI		
Course Name: Taxonomy - Chordates and Type Study								
Course	e Objectives:							
1.	To introduce ba	asic concepts of moder	n Chorda	ate classification with	evolution poi	nt of		
1.	view and to un	derstand the concept o	f taxono	my in higher animal kii	ngdom.			
2.	To describe ger	neral features and class	ify fish a	nd amphibians.				
3.	To introduce the learners to the distinguishing characters of classes Reptilia, Aves and							
J.	Mammalia and their adaptive features with reference to their habitat.							
4.	To study in depth one vertebrate animal type i. e. general characteristics and salient							
₹.	features of animal type - shark.							

Course	e Outcome:	Level of Bloom's Taxonomy
CO1.	Learners will get an idea of the origin of Chordates, its taxonomy up to class with reference to phylogeny and their special features.	Remember
CO2.	Learners will understand the characteristic features and examples of fish and amphibians by their anatomical features.	Understand
CO3.	Learners will understand the characteristic features and examples of the class of Reptilia, Aves and Mammalia.	Knowledge
CO4.	Learners will get an idea of vertebrate animal life after studying one representative animal - sharks.	Understand

Course	e Code:	USZO502 Class: T.Y.B.Sc. Semester					V
Course	Course Name: Haematology and Immunology						
Course	Course Objectives:						
	To introduce to the learner the composition of blood, haemorrhage and						and
1.	haematopoiesi	s. To acquaint the lea	rner witl	n the phys	iology of b	lood clotting	and
	clinical aspects	of haematology.					
2.	To Familiar the	To Familiar the learner the basics of applied haematology and to impart knowledge of					
۷.	diagnostic techniques used in pathology.						
	To introduce the topic of immunology by emphasizing the basic concepts to build a						
3.	strong foundation and to give an overview of the immune system that plays a						s an
	important role in disease resistance.						
4.	To knowledge the concept of vaccines and vaccination.						
4.	To familiarise the learner to immunological perspectives of organ transplantation.						
Course Outcome: Level of Plaam's Tayonomy							

Course	e Outcome:	Level of Bloom's Taxonomy			
	The learner shall comprehend basic haematology. The				
CO1.	learner will be able to identify various components of	Understand			
	haemostatic systems.				
	The learner will be familiar with the terminology used				
	and diagnostic tests performed in a pathological				
	laboratory. The learner shall be acquainted with				
CO2.	diagnostic approaches in haematological disorders.	Remember			
	The learner will be better equipped for further				
	pathological courses or working in a diagnostic				
	laboratory.				
	The students shall comprehend the types of immunity				
CO3.	and the components of the immune system. The	Understand			
cos.	learner will realize the significant role of the immune	onacistana			
	system in giving resistance against diseases.				
CO4.	The learner shall understand immunopathology and	Knowledge			
CO4.	the principles and applications of vaccines. The	Kilowicage			

learner will develop a basic understanding of immunology of organ transplantation.

Course	rse Code: USZO602 Class: T.Y.B					Semester:	VI
Course Name: Physiology and Tissue Culture							
Course	e Objectives:						
1.	To introduce to the learner the fundamental concepts of enzyme biochemistry and to enable the learner to realize applications of enzymes in basic and applied sciences.						
2.	To acquire the learner the concept of homeostasis-thermoregulation and osmoregulation						
3.	To introduce to the learner the details of endocrine glands and its disorders.						
4.	To remember the fundamental concepts of tissue culture and guide them progressively to certain areas of animal tissue culture.						
Course	Course Outcome: Level of Bloom's Taxonomy						

Course	e Outcome:	Level of Bloom's Taxonomy
CO1.	The learner shall understand fundamentals of enzyme structure, action and kinetics. The learner shall appreciate the enzyme assay procedures and the therapeutic applications of enzymes.	Remember
CO2.	The students shall comprehend the adaptive responses of animals to environmental changes for their survival.	Analyse
CO3.	The learner shall analysed the types and secretions of endocrine glands and their functions.	Knowledge
CO4.	The learner shall understand the significance of tissue culture as a tool in specialized areas of research. The learner will appreciate its applications in various industries.	Understand

Course Code:		USZO503	Class:	T.Y.B.Sc	Semester:	V	
Course	e Name:	Histology, Toxicology	, Patholo	gy and Biostatistics			
Course	Objectives:						
	To familiarize the learner with the cellular architecture of the various organs in the						
1.	body. To make	the learner understand	the ne	ed and importance of	different typ	es of	
	tissues in the vit	al organs and their fun	ctions.				
	To introduce th	e learner to the princ	iples of	toxicology with partic	ular emphasi	is on	
2.	toxic responses to chemical exposures, nature and effect of toxicity and toxicity testing.						
۷.	It also intends	to develop amongs	t studer	nts an introductory	understandin	g of	
	regulatory affairs in toxicology.						
	Acquired the I	earner to basics of	general	pathology. To impa	rt knowledg	e of	
3.	retrogressive, necrotic, pathological conditions in the body. To explain the repair						
	mechanism of the body.						
4.	To make learne	r familiar with biosta	tistics as	s an important tool o	f analysis an	d its	
7.	applications.						

Course	e Outcome:	Level of Blooms Taxonomy
CO1.	Learner would appreciate the well-planned organization of tissues and cells in the organ systems.	Remember
CO2.	The course will prepare learner to develop a broad understanding of the different areas of toxicology. It will also develop critical thinking and assist students in preparation for employment in the pharmaceutical industry and related areas.	Understand
CO3.	Students will be familiar with various medical terminologies pertaining to pathological conditions of the body caused due to diseases.	Analyze
CO4.	The learner will be able to collect, organize and analyse data using parametric and non-parametric tests. They will also be able to set up a hypothesis and verify the same using limits of significance.	Analyze

Course	e Code:	USZO603	Class:	T.Y.B.Sc.	Semester:	VI	
Course Name: Genetics and Bioinformatics							
Course	e Objectives:						
	To introduce le	arner to chemical and r	nolecula	r processes that affect	genetic mate	erial.	
1.	To make learn	er understand the cond	cept of D	NA damage and repa	ir, and how	gene	
	control is necessary for cell survival.						
2.	To familiarize learner to a set of techniques to modify an organism's genome to produce						
۷.	improved or novel genes and organisms.						
3.	learner understand with genetic alterations in the human genome and their diagnosis.						
4.	learner acquired to bioinformatics - a computational approach to learning the structure						
4.	and organization of genomes, phylogeny and metabolism.						

Course	e Outcome:	Level of Blooms Taxonomy
	Learner shall get an insight into the intricacies of	
	chemical and molecular processes that affect genetic	
	material.	
	The course shall prepare learner to recognize the	
CO1.	significance of molecular biology as a basis for the	Remember
	study of other areas of biology and biochemistry.	
	Learner shall also understand related areas in	
	relatively new fields of genetic engineering and	
	biotechnology.	
	The learner shall be acquainted with the vast array of	
CO2.	techniques used to manipulate genes which can be	Apply
CO2.	applied in numerous fields like medicine, research,	, (PP)
	etc. for human benefit.	
	The learner shall become aware of the impact of	
CO3.	changes occurring at gene level on human health and	Understand
	its diagnosis.	
CO4.	Learner shall become aware of the computational	Analysed
CO4.	point of view of studying the genomes.	, 300

Course	e Code:	USZO504	Class:	T.Y.B.Sc.	Semester:	V	
Course Name: Anatomy and Developmental Biology							
Course	e Objectives:						
	To introduce the learner to understand different integumentary structures and						
1.	derivatives in	the vertebrates and to	acquai	nt learners with spec	cial derivative	es of	
	integument.						
2.	To introduce the learner to different bones of the human skeleton and their function					ional	
۷.	importance.						
	To study long li	mb muscles involved in	body m	ovements.			
3.	To identify various arrangements of the long limb muscles and to relate the						
Э.	arrangement with contraction and motion.						
	To study muscle injuries and syndromes						
4.	To introduce th	e learner to the basics o	of develo	ppmental biology with	reference to	chick	
4.	as a model and	also familiarize with ex	perimen	its related to it.			
_				1 1 6 51	_		

Course	e Outcome:	Level of Blooms Taxonomy
CO1.	Learner will be able to understand the importance of various types of epidermal and dermal derivatives along with their functions.	Understand
CO2.	Learner will be able knowledge about the structure, types and functions of the human skeleton.	Remember
CO3.	Learner will be able to understand the types of long limb muscles, its arrangement and their role in body movements.	Knowledge
CO4.	Student will be able to understand the processes involved in embryonic development and practical applications of studying chick embryology.	Analyse

Cours	se Code:	USZO604	Class:	T.Y.B.Sc	. .	Semester:	VI
Cours	Course Name: Environmental Biology and Zoopharmacognosy						
Cours	e Objectives:						
1.	Learner should	l understand different	factors	affecting	the environr	ment and va	rious
Δ.	methods to im	prove environmental st	ewardsh	ip.			
	To sensitize lea	rner regarding the vari	ous threa	ats to the	e wildlife		
2.	To introduce	learner various ways	that can	help in	the protecti	on, conserva	ition,
	management, and enhancement of wildlife populations and habitat.						
	To introduce th	ne learner to the concep	ots of bic	prospect	ting and zoopl	harmacognos	Sy.
3.	Learner will be	made aware of the pro	ocess of	discovery	and commer	cialization of	new
Э.	products based on biological resources and introduce learner with various ethological						
	aspects by which non-human animals apparently self-medicate themselves.						
4.	To introduce I	earner to the geograp	ohic dist	ribution	(present and	I past) of ar	nimal
٦.	species. To introduce learner to various ways of animal distribution						
Cours	o Outcomo				Lovel of Bloo	mals Taylon an	

Course	e Outcome:	Level of Bloom's Taxonomy
CO1.	Learner will understand the different factors affecting the environment, its impact and environment management laws.	Understand
CO2.	Learner will be able to understand various methods for wildlife conservation. Learner will be able to apply knowledge to overcome the issues related to wildlife conservation and management	Knowledge
CO3.	Learner will equipped the paradigms of discovery and commercialization of biological resources and knowledge gained from self-medication observed in animals.	Analyse
CO4.	The learners will become acquainted with how and why different animal species are distributed around the globe.	Understand

FACULTY OF SCIENCE – UNDERGRADUATE

Program Name:	F.Y.B.Sc. (Information Technology)		
Assessment:	College	Pattern:	75:25 Marks
Objectives & Outcome Framed by:	University		
Syllabus Copy Link:	https://mu.ac.in/wp-content/u F.Y.B.Scprogramme-in-Inform item-No6.10R-1.pdf		
Department	BSc. Information Technology		

Course	e Code:	USIT101	Class:	FYBSc.I	Т	Semester:	I
Course Name: Programming Principles with C							
Course	Course Objectives:						
1.	To develop the logical ability of the student.						
2.	Basic concepts to	be cleared using suitable	e example	es.			
3.	Different approa	ch towards the problem.					
4.	To handle the er	rors and find suitable solu	itions.				
5.	Debugging the co	ode.					
Course	ourse Outcome: Level of Blooms Taxonomy					าง	
CO1:	Learners will be	e able to learn the ba	sic princ	iples of	Und	derstand	
	programming						
	1	مانون والمراجية المراجية والمراجية					

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to learn the basic principles of programming	Understand
CO2:	Learners will be able to develop logic using algorithms and flowchart.	Apply & Create
CO3:	Learners will be able to Acquire the information about data types.	Analyze
CO4:	Learners will be able to understand input and output functions.	Understand and Remember
CO5:	Learners will be able to enhance advanced concepts using the program.	Remember

Course	e Code:	USIT201	Class:	FYBSc.IT	Semester:	II
Course	Se Name: Object Oriented Programming with C++					
Course Objectives:						
1.	To explain the di	fference between object o	oriented _l	orogramming and proced	dural program	ming.
	To program using more advanced C++ features such as composition of objects, operator					
2.	overloads, dynamic memory allocation, inheritance and polymorphism, file I/O, exception					
	handling, etc					
3.	To build C++ classes using appropriate encapsulation and design principles					
4.	To apply object oriented or non-object oriented techniques to solve					
5.	To solve bigger c	omputing problems				

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to Understand the concept of OOPs,	Understand
CO1.	features of C++ language.	onacistana
	Learners will be able to Understand and apply various	
CO2:	types of Data Types, Operators, and Conversions while	Apply
	designing the program.	
	Learners will be able to Understand and apply the	
CO3:	concepts of Classes & Objects, friend function, constructors	Understand & apply
	& destructors in program design.	
	Learners will be able to Design & implement various	
CO4:	forms of inheritance, String class, calling base class	Implement & Apply
	constructors.	
	Learners will be able to Apply & Analyze operator	
CO5:	overloading, runtime polymorphism, Generic	Apply & Analyze
000.	Programming. Analyze and explore various Stream classes,	πρριγ α πιαιγές
	I/O operations and exception handling.	

Course	e Code:	USIT102	Class:	FYBScIT	Semester:	I
Course	e Name:	Digital Logic and Applications				
Course Objectives:						
1.	To introduce the	basics of logic in digital e	electronic	s as an entry level cours	se. To interpre	t and
Δ.	assess number systems and the conversions of number systems					
2.	To analyze the Boolean expressions and reduce the expression to the minimum.					
3.	To design simple logic circuits using tools such as Boolean Algebra and Karnaugh Mapping.					
4.	To understand the state of a memory cell and its types using flip-flops.					
5.	To create simple	e digital systems using cou	ınters, re	gisters etc.		

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learners will be able to, Apply number conversion techniques in real digital systems	Apply
CO2:	Learners will be able to solve Boolean algebra expressions	Apply
CO3:	Learners will be able to derive and design logic circuits by applying minimization in SOP and POS forms	create
CO4:	Learners will be able to design and develop Combinational and Sequential circuits	create
CO5:	Learners will be able to understand and develop digital applications	Create & understand

Course	e Code:	USIT202	Class:	FYBScIT	-	Semester:	Ш
Course	Course Name: Fundamentals of Microprocessor and Microcontrollers						
Course	e Objectives:						
1.	To understand th	ne basic concept of Micro	Compute	er System	S		
2.	. To develop background knowledge in 8085 Microprocessor						
3.	. To write Assembly language Programs of 8085						
4.	To understand t	the peripheral devices a	nd interf	acing to	8051 Microco	ntroller and d	lesign
7.	aspects of Micro Controller						
5.	Develop a well-	structured embedded p	orogram				
Course	Course Outcome: Level of Bloom's Taxonomy					ny	
CO1:	Learners will be	e able to Understand the	basic con	cepts of	Une	derstand	
552.	Micro Computer Systems						
	Learners will be	able to Understand the	architect	ure and			

Understand

Remember, Understand,

Analyze & Apply

Create, Understand, Apply

Remember, Understand,

Analyze, Apply

CO2:

CO3:

CO4:

CO5:

hardware aspects of 8085

Micro Controller based systems

programs in 8085

Microcontroller

Learners will be able to Write assembly language

Learners will be able to Design elementary aspects of

Learners will be able to Interfacing peripherals using

Course	e Code:	USIT103	Class:	FYBSc IT	Semester:	1
Course	e Name:	Fundamentals of Database Management Systems				
Course Objectives:						
1.	1. to present an introduction to fundamentals of database management systems					
2.	with an emphasis on how to organize					
3.	Understand the concept of normalization and its purpose in database design, Learn about different normal forms (1NF, 2NF, 3NF, BCNF)					
4.	Understand the basics of SQL (Structured Query Language) syntax					
5.	Understand the concept of database transactions and the ACID properties, Describe methods of database recovery for ensuring data integrity after system failures.					

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learners will be able to define and describe the fundamental elements of relational database management systems.	Remember and Understand
CO2:	Learners will be able to relate the basic concepts of relational data model, entity-relationship model, relational database design, relational algebra and SQL.	Apply
CO3:	Learners will be able to design ER-models to represent simple database application scenarios.	Analyze
CO4:	Learners will be able to transform the ER-model to relational tables, populate relational databases and formulate SQL queries on data. Improve the database design by normalization.	Remember, Understand, Apply
CO5:	Learners will be able to understand basic database storage structures and access techniques: file and page organizations, indexing methods and hashing.	Understand

Course	e Code:	USIT203	Class:	FYBScIT	Semester:	II
Course	e Name:	Web Applications Development				
Course Objectives:						
1.	Understand basi	c concepts of Internet and	d World V	Vide Web, Become fami	liar with conce	ept of
	stylesheets and various CSS effects.					
2.	Comprehend different HTML elements that can be used to develop static web pages.					
3.	Peruse JavaScript as a tool to add dynamism to static HTML pages.					
4.	Explore how server-side script works on the web.					
5.	Learn how PHP o	an be connected to a dat	abase to	store and retrieve data.		

Course	e Outcome:	Level of Bloom's Taxonomy
CO1:	Learners will be able to analyze the working of the Internet, Gain an insight into designing web pages.	Analyze
CO2:	Learners will be able to use different ways of styling web pages using CSS.	Create, design
CO3:	Learners will be able to implement basic and complex functionalities of JavaScript in a web page.	Create, evaluate, understand, apply
CO4:	Learners will be able to employ PHP Scripts to execute dynamic tasks in a web page.	Create, evaluate, understand, apply
CO5:	Learners will be able to perform various database tasks using PHP.	Create, apply, evaluate

Course	e Code:	USIT104	Class:	FYBScIT	Semester:	I
Course	Name:	ne: Computational Logic and Discrete Structure				
Course Objectives:						
1.	overview of discrete mathematics.					
2.	Learn new topics such as logic and proofs, sets and functions,					
3.	Enhance problem-solving skills and logical reasoning.					
4.	Learn new topics such as recursion, graph theory					
5.	Detail about tress and other important discrete math concepts.					

Course	Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to use logical notation	Understand, Remember,
CO2:	Learners will be able to perform logical proofs, apply	Analyze, Remember,
CO2.	recursive functions and solve recurrence relations	Understand
CO3:	Learners will be able to use graphs and trees, Apply basic	Apply, Understand
co3.	and advanced principles of counting	Apply, onacistana
CO4:	Learners will be able to define sets and Relations	Create, Apply
CO5:	Learners will be able to calculate discrete probabilities.	Apply

Course	e Code:	USIT204	Class:	FYBScIT	Semester:	II	
Course	e Name:	Numerical Methods					
Course	e Objectives:						
	Introduce the	concept of mathema	tical mo	deling in the contex	ct of engine	ering	
1.	problem-solvin	g, explore concepts re	lated to	significant figures, ac	curacy, prec	ision,	
	and various error definitions.						
2	Understand methods for finding roots of algebraic equations & Study methods for						
2.	estimating values between known data points						
3.	Understand and	d apply iterative metho	ds for so	lving systems of linear	r equations, l	_earn	
5.	numerical tech	niques for approximation	ng deriva	tives and integrals.			
4.	to solve ordina	ary differential equation	ns, Und	erstand the principles	s of least-squ	uares	
٦.	regression for curve fitting.						
_	Learn optimiza	tion techniques for lin	ear prog	ramming problems, S	tudy method	ls for	
5.	solving partial o	differential equations n	umerical	ly.			

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to understand numerical techniques to find the roots of non-linear equations and solution of system of linear equations.	Understand
CO2:	Learners will be able to understand the difference operators and the use of interpolation.	Understand and Remember
CO3:	Learners will be able to understand numerical differentiation and integration and numerical solutions of ordinary and partial differential equations.	Create
CO4:	Learners will be able to demonstrate proficiency in interpreting regression results and assessing the goodness of fit.	Understand
CO5:	Learners will be able to formulate and solve linear programming problems to optimize resource allocation or decision-making.	Apply

Course	e Code:	USIT105	Class:	FYBScIT	Semester:	1
Course	Course Name: Technical Communication Skills					
Course	Course Objectives:					
1.	To recognize the	importance of various ty	pes of co	mmunication in technica	al set up.	
2.	To understand the dynamics in different forms of formal communication.					
3.	To learn about active listening and the art of giving presentations and interviews.					
4.	To learn the art of business writing and ethics in business communication across functional areas.					
5.	To evaluate, ana	lyze and interpret technic	al data.			

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to Analyze, synthesize and utilize the process and strategies from delivery to solving communication problem.	Understand
CO2:	Learners will be able to Learn the communication methodologies at workplace and learning about importance of team collaboration.	Understand and Remember
CO3:	Learners will be able to Learn about different technical communication such as presentations and interviews.	Analyze
CO4:	Learners will be able to Understand and apply the art of written communication in writing reports, proposals.	Analyze
CO5:	Learners will be able to Ground rules of ethical communication and MIS, Understand the functions of graphs, maps, charts.	Understand, Evaluate

Course	e Code:	USIT205	Class:	FYBScIT		Semester:	II
Course	e Name:	Green IT					
Course	Course Objectives:						
1.	To understand the concept of Green Technology, To learn Green IT regulating Green IT and			nd			
different standards.							
2.	To understand the concept of minimizing power utilization in technology.						
To know about Green PCs, Green notebooks and servers and Green data centers. To know 3.		enters. To know	w				
3.	how the way of work is changing and understand implementation of Paperless work.						
4.	To know the concept of Recycling.						
5.	. To understand Metrics for Green IT						
Course	Outcomo				Lovel of Bloc	mc Tayonom	

Course	e Outcome:	Level of Blooms Taxonomy
	Learners will be able to, Understand the concept of Green	
CO1:	IT and problems related to it, Know different standards for	Understand and Remember
	Green IT.	
CO2:	Learners will be able to, Understand the how power usage	Apply, Remember
002.	can be minimized in Technology.	, (pp.)) Hemember
CO3:	Learners will be able to learn about how the way of work is	Apply, Remember
	changing.	FF 77
CO4:	Learners will be able to, Understand the concept of	Apply and Analyze
	recycling.	, ,
CO5:	Learners will be able to know how information system can	Remember
	stay Green Information system.	

FACULTY OF SCIENCE – UNDERGRADUATE

DEPARTMENT OF INFORMATION TECHNOLOGY

Program Name:	Bachelor of Science (Information Technology)			
Assessment:	College Pattern: 75:25 Marks			
Objectives & Outcome Framed by:	University			
Syllabus Copy Link:	https://mu.ac.in/wp-content/uploads/2023/07/6.4-S.Y.B.ScI.T.pdf			
Department	BSc. Information Technology			

Course Code:		USIT301	Class:	SYBScIT		Semester:	Ш
Course Name:		Python Programming					
Course Objectives:							
1.	Interpret the fundamental Python syntax and semantics and be fluent in the use of Python control flow statements						
2.	Express proficiency in the handling of strings and functions						
3.	Determine the methods to create and manipulate Python programs by utilizing the data structures like lists, dictionaries, tuples and sets						
4.	Identify the commonly used operations involving file systems and regular expressions.						
5.	Articulate the Object-Oriented Programming concepts such as encapsulation, inheritance and polymorphism as used in Python			and			
Course Outcome:					Level of Bloo	ms Taxonom	ıv

Course	e Outcome:	Level of Blooms Taxonomy
	Learners will be able to, Aware of the variables,	
CO1:	expressions, looping and conditions used in Python	Remember
	programming	
CO2:	Learners will be able to implement functions, strings	Understand
CO3:	Learners will be able to implement lists, tuples and directories	Understand

	Learners will be able to apply the programming skillset	
CO4:	learnt here into various domains by having advance	Apply
	programming skillset of Python and usage of libraries.	
CO5:	Learners will be able to create GUI forms and add	Create
CO3.	widgets, Use MySQL to store data.	Credie

Course	e Code:	USIT401	Class:	SYBScIT	Semester:	IV
Course	e Name:	Core Java				
Course	e Objectives:					
	Understand the	concept of OOP as well as	the purp	oose and usage principles	s of inheritanc	e,
1.	polymorphism, e	encapsulation and method	d overloa	ding. Identify classes, ob	jects, member	rs of
	a class and the re	elationships among them	needed f	or a specific problem.		
	Create Java application programs using sound OOP practices (e.g., interfaces and APIs) and					
2.	proper program	structuring (e.g., by using	access c	ontrol identifies, automa	itic documenta	ation
	through comme	nts, error exception hand	ling)			
3.	Use testing and	debugging tools to autom	atically d	iscover errors of Java pro	ograms as wel	l as
3.	use versioning tools for collaborative programming/editing					
4.	Develop programs using the Java Collection API as well as the Java standard class library.					
5.	Apply object-oriented programming concepts in problem solving through JAVA					

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to earn the architecture of Java	Understand
CO2:	Learners will be able to identify data types, control flow, classes, inheritance, exceptions and event handling	Understand
CO3:	Learners will be able to use object-oriented concepts for problem solving real-life applications	Apply
CO4:	Learners will be able to build GUI programs	Create
CO5:	Learner will be able to create event driven programs using java.	create

Course	e Code:	USIT302	Class:	SYBScIT	Semester:	Ш	
Course Name: Data Structures							
Course	Course Objectives:						
1.	Ability to analyze	the performance of algo	rithms				
2.	Ability to choose	appropriate algorithm de	esign tech	iniques for solving probl	ems		
3.	Understand how	w a stack & queue can b	oe imple	mented using an array	or a linked li	st.	
4.	Understand the importance of sorting in organizing data for efficient retrieval.						
5.	Understand how the choice of data structures and the algorithm design methods impact the performance of programs						

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to identify and distinguish data structure classification, data types, their complexities	Understand
CO2:	Learners will be able to implement array, linked list	Apply
CO3:	Learners will be able to implement stack and queue.	Apply
CO4:	Learners will be able to implement trees, various hashing techniques and graph for various applications	Apply
CO5:	Learners will be able to compare various sorting and searching techniques	Analyze

Course	e Code:	USIT402	Class:	SYBScIT	-	Semester:	IV	
Course	e Name:	Introduction to Embedd	ed Syster	ns				
Course	e Objectives:							
1.	To introduce the	Building Blocks of Embed	lded Syst	em				
2.	To Educate in Va	rious microcontrollers use	ed in Emb	edded D	evelopment			
3.	To Introduce Bus	Communication in proce	ssors, Inp	out/outpu	ıt interfacing.			
4.	To impart knowle	edge in sensors and actua	itors.					
5.	To familiar with t	the real world application	develop	ment usin	ng embedded sy	ystem		
Course	Outcome:				Level of Bloo	ms Taxonom	าง	
CO1:	Learners will be	able to do differentiate	between	general	Understand			
CO1.	purpose and eml	bedded systems			Onderstand			
CO2:	Learners will be able to enables interoperability		rability	Lin	derstand			
COZ.	between differe	ent embedded systems	•		Onderstand			
CO3:	Learners will be able to discuss the characteristics and Understand							
500.	quality attributes of embedded systems							

Apply

Create

Learners will be able to use different types of sensors for

: Learners will be able to design and develop embedded

CO4:

CO5:

appropriately

systems

Course	e Code:	USIT303	Class:	SYBScIT		Semester:	Ш
Course	e Name:	Computer Networks					
Course	e Objectives:						
1.	Knowledge of us	es and services of Comp	uter Netw	ork.			
2.	Ability to identify	y types and topologies of	network.				
3.	Understanding o	f analog and digital trans	smission o	f data			
4.	Familiarization w	vith the techniques of ro	uting				
5.	. Understand the functioning of networking application						
Course	Course Outcome: Level of Blooms Taxonomy						
CO1.	Learners will	be able to identif	fy variou	ıs data	Do	m om b or	

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to identify various data communication standards, topologies and terminologies	Remember
	communication standards, topologics and terminologics	
CO2:	Learners will be able to describe how signals are used to	Understand, Remember
CO2.	transfer data and communication aspects between nodes	onderstand, Nemember
CO3:	Learners will be able to configure IP addresses using	Annly
CO3.	routing protocols	Apply
CO4:	Learners will be able to configure IP addresses using	Apply
CO4.	TCP/IP protocol suit	Αρριγ
CO5:	Learners will be able to use different application layer	Annly
CO3.	protocols	Apply

Course	Course Code: USIT403 Class: SYBScIT		SYBScIT	Semester:	IV			
Course Name: Computer Oriented Statistical Techniques								
Course	e Objectives:							
1.	To learn the diffe	erent methods of calculat	ing the ce	entral tendencies				
2.	To introduce the	moments, skewness and	kurtosis.					
3.	To learn scientifi	c view to conduct the sur	vey in pro	oper way to collect the d	ata about spe	cific		
3.	perspective.							
4.	To Learn variety of probability sampling methods for selecting a sample from a population.							
5.	To learn the sampling theory and testing of hypothesis and making inferences. To introduce							
Э.	the students with understanding of the curve fitting, regression and correlation techniques.							

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to calculate and apply measures of central tendencies and measures of dispersion grouped and ungrouped data cases.	Apply
CO2:	Learners will be able to calculate the moments, skewness and kurtosis by various methods.	Apply
CO3:	Learners will be able to apply discrete and continuous probability distributions to various business problems.	Apply
CO4:	Learners will be able to perform Test of Hypothesis as well as calculate confidence interval for a population parameter for single sample and two sample cases. Understand the concept of p-values	Apply
CO5:	Learners will be able to apply simple linear regression and correlation model to real life examples.	Analyze

Course	e Code:	USIT304	Class:	SYBScIT		Semester:	Ш
Course	Course Name: Operating Systems						
Course	Objectives:						
1.	Analyze the cond	epts of processes in oper	ating syst	tem and i	llustration of th	ne scheduling o	of
Δ.	processor for a g	iven problem instance.					
2.	Identify the dead	l lock situation and provid	le approp	riate solu	ition so that pr	otection and	
	security of the o	perating system is also ma	aintained				
	Analyze memory	management techniques	, concep	ts of virtu	al memory and	l disk schedulir	ng.
3.	Understand the	mplementation of file sys	tems and	d director	ies along with t	the interfacing	of IO
	devices with the	operating system.					
4.	Ability to apply C	PU scheduling algorithms	to mana	ge tasks.			
5.	Knowledge of m	ethods of prevention and	recovery	from a sy	stem deadlock	(
Course	e Outcome:				Level of Bloo	oms Taxonom	ıy
CO1:	Learner will b	e able to Role of O	perating	System	Lin	derstand	
CO1.	Computer System.						
CO2:	Learner will b	e able to Use the di	ferent t	ypes of	Un	derstand	
CO2.	Operating System	n and their services.			Offic	acistana	

Apply, Analyze

Apply

Apply

Learner will be able to configure process scheduling

Learner will be able to Apply virtual memory concepts.

Learner will be able to Effectively use and manage

CO3: algorithms and synchronization techniques to achieve

better performance of a computer system.

secondary memory

CO4:

CO5:

Course	e Code:	USIT404	Class:	SYBScIT	Semester:	IV
Course Name: Software Engineering						
Course	e Objectives:					
1.	Develop the soft	ware projects or prototyp	es by un	derstanding the requirer	ments	
2.	Meet the project deadlines along with the number of resources and type of tasks to be carried out. Evaluate and analyze the SDLC and basic architecture SRS documents.					
3.	Help to understand the software design and coding techniques.					
4.	Understand the concept project management, Understand the software testing principles.			S.		
5.	Identify various	concepts of Advanced UM	1L technic	ques		

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	The Learner will be able to Understand software	Understand
CO1.	engineering	onderstand
CO2:	The Learner will be able to Apply software engineering	Apply
002.	principles	, .bb.)
CO3:	The learner will be able to understand quality	Understand
cos.	management, project management	onacrstana
	Learners will be able to discuss various approaches to	
CO4:	verification and validation of software including testing,	Understand
	measurements and estimation of software products	
CO5:	Learners will be able to create software using different	Create
CO3.	software development models	S. Cute

Course Code:		USIT305	Class:	SYBScIT	-	Semester:	Ш	
Course Name:		Applied Mathematics						
Course Objectives:								
1.	Apply the knowledge of matrices to solve the problems.							
2.	Know and to understand various types of numerical methods.							
3.	Ability to interpret the mathematical results in physical or practical terms for complex numbers.							
4.	Inculcate the habit of Mathematical Thinking through Indeterminate forms and Taylor series expansion							
5. Solve and analyze the Partial derivatives and its application in related field of engineering								
Course Outcome:				Level of Blooms Taxonomy				
CO1:	Learners will be able to solve the matrix operations, identify the linear dependence and independence of a vectors					Apply		
CO2:	Learners will be able to familiar with the various forms and operations of a complex number.			Understand				
CO3:	Learners will be able to find the Laplace transform of a function and Inverse Laplace transform of a function using definition also solve ordinary differential equations using Laplace transform.			Apply				
CO4:	Learners will be able to evaluate the multiple integrals in Cartesian, Polar coordinates, change the order of the integral, Apply integration methods to calculate the areas and volumes of solids.			of the	Apply			
CO5:	Learners will be able to evaluate the Beta, Gamma, Differentiation Under integral sign and error functions			Apply				

Course	e Code:	USIT405	Class:	SYBScIT	Semester:	IV	
Course Name:		Computer Graphics and Animation					
Course Objectives:							
1.	To train the students to acquire skills in generating marketable computer graphics and						
	animated pictures, especially in the area of advertisements.						
2.	To train the students to acquire skills and mastery in the use of different software producing						
	graphics and animation.						
3.	The course introduces the basic concepts of computer graphics.						
4.	It provides the n	ecessary theoretical back	ground a	nd demonstrates the app	olication of		
	computer science to graphics.						
5.		er allows students to dev	elop prog	ramming skills in compu	iter graphics		
	through programming assignments						

Course	e Outcome:	Level of Blooms Taxonomy	
CO1:	Learners will be able to understand the basics of computer graphics, different graphics systems and applications of computer graphics	Understand	
CO2:	Learners will be able to explore projections and visible surface detection techniques for display of 3D scene on 2D screen. Render projected objects to naturalize the scene in 2D view and use of illumination models	Understand, Apply	
CO3:	Learners will be able to apply and compare the algorithms for drawing 2D images also explain aliasing, antialiasing and half toning techniques. Discuss OpenGL application programming Interface and apply it for 2D & 3D computer graphics	Apply, Analyze	
CO4:	Learners will be able to understand the core concepts and mathematical foundations of computer graphics	Understand	
CO5:	Learners will be able to solve the problems on viewing transformations and explain the projection and hidden surface removal algorithms, Apply basic ray tracing	Apply, Analyze	

algorithm, shading, shadows, curves and surfaces and also solve the problems of curves

FACULTY OF SCIENCE – UNDERGRADUATE

DEPARTMENT OF INFORMATION TECHNOLOGY

Program Name:	Bachelor of Science (Information Technology)			
Assessment:	University Pattern: 75:25 Marks			
Objectives & Outcome Framed by:	Institute			
Syllabus Copy Link:	https://old.mu.ac.in/wp-content/uploads/2016/06/4.49-Final-TYBSc-IT-Syllabus-2.pdf			
Department	BSc. Information Technology			

Course	e Code:	USIT501	Class:	TYBScIT		Semester:	V
Course Name: Software Project Management							
Course	e Objectives:						
1.	Maintain accu	rate and comprehe	nsive doo	cumentat	tion, includin	g project p	olans,
1.	progress report	ts, and meeting minut	es.				
2.	Improve projec	t planning, create & m	anage pro	oject exp	ectation & bu	dget	
	To plan and sc	hedule activities for a	project,	identify,	assess, and r	nitigate risks	that
3.	could impact the project and identify, allocate resources (e.g., people, equipment,						
	materials) requ	ired for the project.					
	To track proje	ct progress, establish	and man	age con	tracts with v	endors and	other
4.	stakeholders involved in the project, and also create a positive and productive work						
	environment fo	or the project team.					
	To understand	I the importance of	teamwoi	rk in so	ftware devel	opment pro	jects,
5. significance of software quality, importance and process of closing out a sof					g out a soft	ware	
	development project effectively.						
Course	e Outcome:				Level of Bloo	ms Taxonon	าง

	The learner will be able to do the successful delivery	
CO1:	of the project within the defined scope, timeline, and	Apply
	budget.	
CO2:	The learner will be able to do efficient resource	Apply
CO2.	allocation & improved project control	Дру
	Learners will be able to improved project planning,	
CO3:	Reduced project risks, improved risk management	Apply
	plan, improved project control.	
	Learners will be able to improved project visibility,	
CO4:	Clear understanding of rights and responsibilities,	Understand
	reduced contractual risks, Improved team morale	
	Learners will be able to learn about effective team	
CO5:	structures, communication strategies, and leadership	Remember, Understand
COJ.	approaches, reasons for project closure, software	Kemember, Onderstand
	quality models.	

Course	e Code:	USIT601	Class:	TYBScIT	Γ	Semester:	VI	
Course	Course Name: Software Quality Assurance							
Course	Objectives:							
1.	Introduce the Concept of Quality in Software Development, Understand the Prin						iples	
1.	of Software Qu	ality						
2.	Introduce softw	vare testing						
3.	Learn about U	Jnit Testing in Softw	are Dev	elopmen	it, Explore D	ata Flow Te	sting	
	Techniques							
4.	Understand Sof	tware Validation and V	erificatio	n Proces	ses, Introduce	e the V-Test N	1odel	
	in Software Tes	ting						
5.	Understand Dif	ferent Levels of Testing	g, Explore	Speciali	ized Testing To	echniques		
Course	e Outcome:				Level of Bloo	oms Taxonon	ıy	
	Learners will be	able to understand th	e import	ance of				
CO1:	quality in soft	e Apply, Knowled	Knowledge					
	quality using es	tablished principles.						
	Learners will be	e able to understand th	ne variou	s types				
CO2:	of testing, app	ly knowledge to reco	gnize sit	uations	Apply,	Knowledge		
	where testing is	s essential.						
	Learners will be	e able to implement an	d execut	e basic				
CO3:	unit tests, app	oly data flow testing	techniq	ues to	Apply,	Knowledge		
	identify potent	al issues.						
	Learners will b	e able to implement	validatio	on and				
CO4:	verification p	rocesses in a soft	tware p	oroject,	Apply,	Knowledge		
	Understand the	e rationale behind the \	/-Test mo	odel.				
		e able to understand		<u>-</u> '				
CO5:	·	each testing leve			Evaluate, A	pply, Knowle	dge	
		of specialized testing	in add	ressing				
	specific concern	ns.						

Course	e Code:	USIT502	Class:	TYBScIT	Г	Semester:	V	
Course Name: Internet of Things								
Course	e Objectives:							
1.	Introduce the concept of IoT, overview of technology, & explore potential application						ation	
	of IoT			.			ام ماما	
2.	devices, physica	oncept of prototyping al design.	various re	elated to	pics in the cor	itext of embe	eaaea	
3.		oncept of prototyping Iline components.	various re	elated to	pics in the con	itext of embe	edded	
4.	Understand Ted	chniques for Writing E	mbedded	Code, E	xplore Busines	ss Models in	loT	
5.	Understand the	e Process of Moving to	Manufac	ture in lo	oT, Explore Etl	nics in IoT		
Course	e Outcome:				Level of Bloo	oms Taxonon	ny	
CO1:	The learners w	ill be able to gain bas	ic knowle	edge of	Remembe	member, Understand,		
CO1.	IoT, how it wor	ks, & identify uses of I	oT.		Apply			
	The learners w	ill be able to gain bas	sic knowle	edge of				
CO2:	different prototyping concepts, including sketching,				Remember			
COZ.	cost considera	tions, open-source v	s. closed	-source				
	options.							
CO3:	The learners w	ill be able to gain bas	sic knowle	edge of	Remember			
	different proto	typing concepts and A	PI integra	tion.				
	The learners w	ill be able to Identify a	and comp	rehend				
CO4:	various techni	ques, Understand di	fferent b	usiness	Knowl	edge, Apply		
	models applica	ble to IoT.						
	The learners wi	ll be able to Grasp the	steps invo	olved in				
	transitioning fr							
CO5:	Understanding	the steps in moving	o manuf	acture.,	Knowl	edge, Apply		
		anufacturing princi	oles to	loT				
	development.							

Course	e Code:	USIT602	Class:	TYBScIT	Semester:	VI
Course	e Name:	Security in Computing	5			
Course	e Objectives:					
Understand the fundamental principles of computer security and the CIA triad (Confidentiality, Integrity, Availability), Understand the process of identifying, assessing, and mitigating security risks, Learn and apply secure design principles for software, hardware, and network systems						
2.	Understand different methods for user authentication (e.g., passwords, multi-factor authentication), the concept of access control and authorization mechanisms, basic concepts of encryption, decryption, and different encryption algorithms ,the importance of securing storage devices and data at rest and security threats and best practices for securing databases					basic ,the
3.	Understand principles of designing secure networks, including segmentation and demilitarized zones (DMZs), importance of securing network devices such as routers and switches, functionality and different types of firewalls, security risks associated with wireless networks and different security protocols					
4.	Understand the concepts of intrusion detection and prevention systems, security considerations and best practices for securing VOIP communications, different operating system security models and their access control mechanisms					
5.	security consid	e importance of physical erations and best pracorinciples and best pracorinciples and best pracorinciples	ctices fo	or securing virtual m	nachines and o	cloud

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to apply secure design principles to develop or evaluate the security of a system, Identify and analyze potential security risks in a given scenario, Explain the importance of security in computing systems and the CIA triad	Understand, Apply, Analyze

CO2:	Learners will be able to explain the purpose and benefits of different authentication methods, implement basic access control mechanisms to define user permissions Explain the use cases and benefits of encryption in secure communication Implement best practices for securing data storage, such as encryption and access control, identify potential security vulnerabilities in a database system and suggest mitigation strategies	Understand, Apply, Analyze
CO3:	Learners will be able to apply secure network design principles to a specific network topology Configure basic security settings on network devices Choose and configure appropriate firewalls for specific network security needs Configure secure wireless networks using appropriate encryption and authentication mechanisms	Apply, Evaluate
CO4:	Learners will be able to explain the role of intrusion detection and prevention systems in network security, Identify potential security vulnerabilities in VOIP implementations and propose mitigation strategies, Compare and contrast different operating system security models	Understand, Analyze
CO5:	Learners will be able to develop a basic physical security plan for an IT environment Evaluate the security posture of a virtualized or cloud environment and suggest improvements Apply secure coding practices to identify and prevent common application vulnerabilities	Create, Evaluate, Apply

Course	e Code:	USIT503	Class:	TYBScIT	•	Semester:	V
Course	coue.	0311303	Class.	TTDSCIT		Semester.	V
Course	e Name:	Advanced Web Progra	mming				
Course	e Objectives:						
1.	Understand the	e basics of .NET, fundam	entals o	f c# lang	uage,		
2.	Understand the	Basics of Web Forms	in ASP.N	IET, Lear	n About Forn	n Controls in	Web
2.	Forms						
3.	Implement Erro	or Handling in ASP.NE, U	Indersta	nd State	Management	t in ASP.NET	
4.	Learn ADO.NET for Data Access in ASP.NET, Implement Data Binding in ASP.NET						
5.	Understand the Role of XML in ASP.NET, Implement Security Measures in ASP.NET,						
3.	Explore ASP.NET AJAX for Enhanced User Experience						
Course	Outcome:				Level of Bloo	oms Taxonom	ıy

Course	e Outcome:	Level of Blooms Taxonomy
	Learners will be able to understand the principles of	
CO1:	object-oriented programming in C#, Apply knowledge	Knowledge, Apply
	to recognize suitable situations for using .NET.	
CO2:	Learners will be able to create a simple web form,	Knowledge, Apply
CO2.	Understand the life cycle events of a web form.	Miowiedge, Apply
	Learners will be able to identify common errors and	
CO3:	exceptions in web applications, Understand the pros	Knowledge, Apply, Analysis
	and cons of various state management methods.	
	Learners will be able to understand the basics of	
CO4:	ADO.NET and its role in data access, Implement data	Knowledge, Apply, Analysis
	binding techniques in a web application.	
	Learners will be able to implement authentication and	
CO5:	authorization mechanisms, improving the user	Knowledge, Apply, Analysis
	experience, Create and parse XML documents in a web	
	application.	

Course Code: USIT603 Class: TYE		TYBScIT	Semester:	VI				
Course Name: Business Intelligence								
Course	Objectives:							
1.	Understand the	e core concepts of Bus	iness In	telligence and its role	in organizat	ional		
	decision-makin	g, become familiar with	differer	nt types of DSS and the	ir functionali	ties		
	Understand the	e application of mathe	ematical	models in data analy	sis and deci	sion-		
2.	making and into	roduce the basic concep	ots and t	echniques of data min	ing and reco	gnize		
	the importance	of data preparation an	d its ste	os				
3.	Learn about di	fferent classification alg	gorithms	and their application	s and unders	stand		
5.	the concept of clustering and its applications							
	Explore various	use cases of BI in differ	ent indu	stries and introduce co	mmon mark	eting		
4.	models used fo	r customer segmentation	on, mark	et research, and camp	aign analysis	, the		
٦.	use of models	s in logistics and pro	duction	planning Introduce	the concept	and		
	applications of DEA in performance evaluation							
5.	Understand the	e importance of knowled	dge mana	agement in organizatio	ns and its rel	ation		
٦.	to BI and Introduce the use of AI and expert systems in BI applications							

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to explain the benefits and limitations of implementing BI systems in an organization and identify the appropriate type of DSS to address a specific business problem	Understand, Apply
CO2:	Learners will be able to apply basic mathematical models to analyze data and support decision-making and explain the different data mining tasks and their potential applications and perform basic data cleaning and pre-processing tasks	Understand, Apply
CO3:	Learners will be able to choose and apply appropriate classification techniques to categorize data	Apply

	Apply clustering algorithms to group similar data	
	points	
	Learners will be able to identify potential applications	
	of BI within a specific business context, Explain the	
	purpose and application of specific marketing models	
CO4:	in practical scenarios apply basic models to optimize	Understand, Analyze, Apply
	logistics or production processes and explain the	
	methodology and limitations of using DEA for	
	efficiency measurement	
	Learners will be able to identify strategies for	
COL	effectively capturing and sharing organizational	Understand, Apply,
CO5:	knowledge and also explain the potential benefits and	Remember
	challenges of integrating AI into BI systems	

Course	e Code:	USIT504	Class:	TYBScIT	Semester:	V		
Course	e Name:	Artificial Intelligence						
Course	e Objectives:							
1.	Understand the	Basics of Artificial Inte	lligence,	Define and Explain	ntelligent Agei	nts in		
1.	AI.							
2.	Understand ba	asic search algorithms	, Explor	e limitations of cl	assical search	and		
۷.	advanced techniques							
3.	Understand game playing as a search problem, Introduce the use of logic for reasoning				oning			
4.	Understand the syntax and semantics of FOL, learn methods to draw conclusions f				from			
FOL knowledge bases								
5.	Understand the	e process of generating	plans fo	or achieving goals, u	nderstand diff	erent		
<i>J</i> .	methods for re	methods for representing knowledge in AI						
					Level of Bloor	ms		

Course	e Outcome:	Level of Blooms
Course	- Cattonie	Taxonomy
	Learners will be able to understand the significance and	
CO1:	applications of AI in various domains, identify real-world	Remember,
CO1.	examples where AI is currently applied, Identify and describe	Knowledge, Apply
	examples of intelligent agents in practical scenarios	
	Learners will be able to apply search algorithms to solve simple	Apply, Remember,
CO2:	problems, analyze scenarios where advanced search techniques	Analyze
	are required	Allalyze
CO3:	Learners will be able to implement and evaluate game playing	Apply, Understand,
CO3.	algorithms, apply logical reasoning to simplify problems	Remember
	Learners will be able to express complex knowledge and	Understand, Create,
CO4:	relationships using FOL, apply inference rules to solve logic	Analyze
	puzzles and answer queries	Allalyze
	Learners will be able to formulate and evaluate plans for solving	Understand,
CO5:	problems in simple domains, Choose appropriate knowledge	Evaluate
	representation for specific tasks	Evaluate

Course	e Code:	USIT604	Class:	TYBScIT	Semester:	VI
Course	e Name:	Principles of Geograph	nic Infori	mation Systems		
Course	e Objectives:					
1.	Introduce the b	pasic concepts of GIS an	d its app	lications		
2.	Understand the	e different types of hard	dware an	d software used in GI	S	
۷.	Provide a comp	orehensive overview of	the core	components and fun-	ctionalities of	GIS
3.	Introduce different methods for data input and data preparation in GIS					
4.	Understand va	rious analytical capabili	ties of G	S for exploring and m	anipulating s	oatial
4.	data and introduce methods for classifying and measuring spatial features in GIS					
	Understand the role of data visualization in GIS and its various techniques			iques		
	Introduce the i	relationship between G	IS and m	naps, and the map cre	eation process	s and
5.	understand the different stages involved in the GIS visualization process and explore					
	different visualization approaches depending on the intended audience and purpose					
	and introduce	common cartographic e	lements	and tools used in ma	p creation	

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to explain the purpose and	Understand
CO1.	benefits of using GIS in various fields	onderstand
	Learners will be able to identify the appropriate	
CO2:	hardware and software components for specific GIS	Understand, Apply
CO2.	tasks explain the different stages involved in a typical	Onderstand, Apply
	GIS workflow	
CO3:	Learners will be able to perform basic data cleaning	Apply
cos.	and formatting tasks for use in GIS software	Дру
	Learners will be able to apply basic spatial analysis	
	techniques (e.g., overlay, buffering) to answer	
CO4:	geographic questions and classify spatial data based	Apply
	on specific criteria and perform basic measurements	
	(e.g., area, distance)	

Learners will be able to choose and apply appropriate visualization methods to effectively communicate spatial information, Explain the key elements of a map and describe the process of creating maps using GIS Plan and create basic maps using appropriate visualization techniques, Choose and justify the most suitable visualization strategy for a specific communication goal and apply basic cartographic principles to enhance the clarity and effectiveness of visualizations

Understand, Apply, Evaluate

CO5:

Course	e Code:	USIT507	Class:	TYBScIT	Semester:	V	
Course	e Name:	Next Generation Tech	nologies				
Course	e Objectives:						
	Introduce eme	rging technologies with	a focus	on data management	t, Understand	d the	
1.	concept of big	data, its challenges, and	d potent	ial solutions, Get fami	liar with the	basic	
Δ.	functionalities	and core concepts of N	/longoDE	3, Introduce NoSQL da	tabases and	their	
	differences from	m relational databases					
	Learn basic co	mmands to interact wit	th Mong	oDB through the shel	l, Understand	d the	
2.	document-oriented data model used in MongoDB , Understand the overall architecture						
	of MongoDB, including its components and communication flow						
Learn about different storage engine options av				available in MongoDI	3, Explore va	rious	
3.	real-world applications where MongoDB is a suitable choice, Understand the limitations						
	and trade-offs associated with using MongoDB.						
4.	Assuming basic knowledge of JavaScript						
5.	Understand the JSON data format and its use in data exchange						

Course	e Outcome:	Level of Blooms Taxonomy
	The learners will be able to Explain the advantages and	
CO1:	disadvantages of NoSQL databases for specific use	Remember, understand,
CO1.	cases, Analyze real-world examples of big data	Apply, Analyze
	applications and their implications	
	The learner will be able to explain the purpose and	
CO2:	functionality of different components within the	Remember, understand,
CO2:	MongoDB architecture, write simple queries and	Apply
	manipulate data using the MongoDB shell	
	The learner will be able to choose the appropriate	
603	storage engine based on specific data access patterns	Remember, Understand,
CO3:	and performance requirements, Identify potential use	Evaluate, Analyze
	cases for MongoDB in different industry domains	

CO4:	The learner will be able to introduce the jQuery library and its functionalities for interacting with web pages	Remember
CO5:	The learners will be able to Parse and manipulate JSON data using JavaScript	Understand, Apply

Course	e Code:	USIT606	Class:	TYBScIT	Semester:	VI	
Course	e Name:	IT Service Managemer	nt				
Course	e Objectives:						
1.	Understand the	core concepts of ITSM	, Unders	tand the fundamental	principles gu	iding	
Δ.	service strategy, Analyze risks associated with service strategy						
2.	Understand the	e goals and principles o	of servic	e design, identify chal	lenges assoc	iated	
2.	with service design						
3.	Understand the	e purpose and goals of	service	transition, explain ke	y concepts w	/ithin	
J .	service transition						
4.	Understand the	e principles guiding se	rvice op	eration, explain core	service oper	ation	
	processes						
5.	Understand the	e importance and goals	of CSI, di	fferent methods and t	echniques us	ed in	
Э.	CSI						

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	The learner will be able to explain the benefits of ITSM for organizations and different ITIL processes, develop a list of CSFs for implementing service strategy	Understand, Remember, Analyze
CO2:	The learner will be able to apply service design principles to create a basic service design plan, develop strategies to overcome challenges	Understand, Remember, Analyze, Create
CO3:	The learner will be able to describe the steps involved in transitioning new or changed services into a live environment, apply service transition principles within a given scenario	Remember, Understand, Apply
CO4:	The learner will be able to describe the purpose and activities within each service operation process, analyze how service operation processes impact the overall IT service delivery	Understand, Remember, Analyze

CO5: improving IT services, Select appropriate CSI methods understand, Evaluate and techniques for a given scenario		The learner will be able to recommend solutions for	
and techniques for a given scenario	CO5:	improving IT services, Select appropriate CSI methods	Understand, Evaluate
		and techniques for a given scenario	

Subjects Offered by the Institute							
	First Year – Bachelor of Science (Biotechnology)						
Sr. No.	Semester – I	Sr. No.	Semester – II				
1	Fundamentals of biotechnology-I	1	Fundamentals of Biotechnology-II				
2	Microbiology-I	2	Cell biology and Microbiology-II				
3	Basic Chemistry-I	3	Basic Chemistry-II				
4	Biochemistry: Concept of	4	Biochemistry: Concept of Biomolecules-II and Basic analytical techniques				
5	Genetics	5	Physiology and Immunology				
6	Molecular biology-I	6	Basic Computers and Biostatistics				
7	Ability enhancement course - Communication skills	7	Ability enhancement course - Sustainable development and Environmental biotechnology				
8	Practicals of USBT101 & USBT102	8	Practicals of USBT201 & USBT202				
9	Practicals of USBT103 & USBT104	9	Practicals of USBT203 & USBT204				
10	Practicals of USBT105 & USBT106	10	Practicals of USBT205 & USBT206				

	Subjects Offered by the Institute				
Second Year – Bachelor of Science (Biotechnology)					
Sr. No.	Semester – III	Sr. No.	Semester – IV		
1	Biophysics	1	Biochemistry		
2	Applied Chemistry- I	2	Applied Chemistry- II		
3	Immunology	3	Medical Microbiology		
4	Cell Biology and Cytogenetics	4	Environmental Biotechnology		
5	Molecular Biology	5	Biostatistics and Bioinformatics		
6	Bioprocess Technology	6	Molecular Diagnostics		
7	Research Methodology	7	Entrepreneurship Development		
8	Practicals of USBT301 and USBT302	8	Practicals of USBT401 and USBT402		
9	Practicals of USBT303 and USBT304	9	Practicals of USBT403 and USBT404		
10	Practicals of USBT305 and USBT306	10	Practicals of USBT405 and USBT406		

Subjects Offered by the Institute						
	Third Year – Bachelor of Science (Biotechnology)					
Sr. No.	Semester – V	Sr. No.	Semester – VI			
1	Cell biology	1	Biochemistry			
2	Medical Microbiology & Instrumentation	2	Industrial Microbiology			
3	Genomes and Molecular Biology	3	Pharmacology and Neurochemistry			
4	Marine Biotechnology	4	Environmental Biotechnology			
5	Practical - Cell biology & Medical Microbiology & Instrumentation	5	Practical - Biochemistry & Industrial Microbiology			
6	Practical - Genomes and Molecular Biology of Marine Biotechnology	6	Practical - Pharmacology - Neurochemistry and Environmental Biotechnology (50M) + Project work (50M)			
7	Biosafety	7	Agri Biotechnology			
8	Practical - Biosafety	8	Practical - Agri Biotechnology			

FACULTY OF SCIENCE – UNDERGRADUATE

Program Name:	Bachelor of Science (Biotechnology)			
Assessment:	College Pattern: 75:25 Marks			
Objectives & Outcome Framed by:	University			
Syllabus Copy Link:	https://mu.ac.in/wp-content/uploads/2022/02/AAMAug172202122.pdf			
Department	Biotechnology			

Course	e Code:	USBT101	Clas	s:	FYBIOTE	СН	Semester:	I
Course	e Name:	FUNDAMENTALS	OF BIOTE	CHNO	OLOGY-1			
Course Objectives:								
1.	To introduce th	e students about t	the scope	of bio	otechnol	ogy.		
2.	To familiarize	the students w	vith the	pote	ntial ar	nd different	application	s of
۷.	biotechnology							
3.	3. To equip students with the knowledge of fermentation technology.							
Course	Course Outcome: Level of Bloom's Taxonom				ny			
	Learners will de	monstrate a solid ι	understan	ding	of the			
CO1:	principles and	scope of biote	chnology,	incl	uding	Unde	erstanding	

Course	e Outcome:	Level of Bloom's Taxonomy
	Learners will demonstrate a solid understanding of the	
CO1:	principles and scope of biotechnology, including	Understanding
	developments in various fields of Biotechnology	
	Learners will be able to relate to applications and	
CO2:	benefits of Biotechnology in the fields of agriculture,	Applying
	livestock, human health and environment	
CO3:	Learners will be able to discuss the basics of	Creating
CO3.	fermentation-like design and operations	Creating

Course	e Code:	USBT201	Class:	FYBIOT	ECH	Semester:	II
Course	rse Name: FUNDAMENTALS OF BIOTECHNOLOGY-II						
Course	e Objectives:						
1.	To acquaint stu	dents with the applicat	ions of b	iotechno	ology in the fie	eld of food.	
2.	To introduce le	arners to the fundamer	itals of n	nedical b	iotechnology.		
3.	To provide an i	n-depth knowledge of g	enetic e	ngineeri	ng techniques		
CO1:		develop an understa	J		Unde	erstanding	
	application of b	oiotechnology in the foo	d indust	ry.		_	
CO2:	Learners will	gain detailed knowled	lge of	genetic	Ą	oplying	
	engineering.						
CO3:	Learners will be	e able to discuss tools	and tech	niques	A	oplying	
	used in medica	l biotechnology.			'	. , 3	

Course Code:	USBT102	Class:	FYBIOTECH	Semester:	I
Course Name:	MICROBIOLOGY-1				
Course Objectives:					

- To build a firm foundation in microbiology.
 - 2. To gain knowledge about the sterilization techniques.
 - 3. To develop skills in microscopic and staining techniques.

Course	Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to develop an understanding of cultivation of microorganisms.	Understanding
CO2:	Learners will understand the role of sterilization and disinfection in the field of microbiology	Analyzing
CO3:	Learners will develop skills towards use of microscopy and staining techniques	Understanding

Course Code:	USBT202	Class:	FYBIOTECH	Semester:	П
Course Name:	CELL BIOLOGY AND M	ICROBIO	LOGY-II		

- To provide a comprehensive understanding of the ultrastructure of prokaryotic and 1. eukaryotic cells.
- 2. To build a firm foundation of concepts related to microbiology.
- 3. To introduce the principles of virology.

Course	e Outcome:	Level of Blooms Taxonomy
	Learners will be able discuss the ultrastructure,	
CO1:	function and location of organelles in prokaryotic and	Analyzing
	eukaryotic cells.	
CO2:	Learners will understand microbial growth and	Understanding
CO2.	enumeration.	onderstanding
CO3:	Learners will acquire knowledge in the basics of	Understanding
cos.	virology.	Onacistanding

Course	e Code:	USBT103	Class:	FYBIOTECH	Semester:	I
Course	e Name:	BASIC CHEMISTRY- I				
Course	e Objectives:					
To introduce the fundamental concepts of chemistry like nomenclature and chemical bonds.						
2.	To acquire prac	tical skills of titrimetry	and grav	imetry techniques.		

3.	To gain detail knowledge about stereochemistry				
Course	e Outcome:	Level of Blooms Taxonomy			
CO1:	Learners will be able to develop an understanding of	Understanding			
CO1.	chemical bonds.	onderstanding			
CO2:	Learners will develop skills towards use of titrimetric	Analyzing			
COZ.	and gravimetric analysis	Anaryzmig			
CO3:	Learners will be able to differentiate between chiral	Applying			
co3.	and achiral molecules and different enantiomers	Abhiling			

Course	e Code:	USBT203	Class:	FYBIOT	ECH	Semester:	II
Course	e Name:	BASIC CHEMISTRY-II					
Course Objectives:							
1.	To provide stud	ents with a comprehen	sive und	erstandir	ng of the funda	amental princ	ciples
1.	of thermodynamics.						
2.	To equip students with the skills necessary to apply the laws of thermodynamics to						
۷.	various physical and biochemical systems.						
3.	To introduce st	tudents to the basics o	f chemic	al kineti	cs like oxidat	ion and redu	ction
Э.	reactions						
Course	e Outcome:				Level of Bloo	oms Taxonom	าง
CO1:	Learners will be	e able to develop an ur	nderstan	ding of	Unde	erstanding	
CO1.	thermodynamic	CS.			Office	zistanunig	

Analyzing

Applying

Learners will gain knowledge about reaction kinetics

Learners will gain insight into the details of oxidation

CO2:

CO3:

and order of reaction

and reduction reactions

Course	e Code:	USBT104	Class:	FYBIOT	ECH	Semester:	I
Course	Course Name: BIOCHEMISTRY: CONCEPT OF BIOMOLECULES-I						
Course Objectives:							
1.	To provide a comprehensive understanding of the preparation of standard solutions						
1.	and the concept of buffers.						
2.	. To equip students with a solid foundation in carbohydrate chemistry.						
3.	To introduce the basics of lipid chemistry, focusing on the classification and biological				gical		
Э.	functions of fatty acids and lipids.						
Course Outcome: Level of Blooms Taxonomy					ıy		
CO1:	Learners will o	levelop skills towards	prepara	tion of	Linde	erstanding	
COI.					Office	Ji Ji di laling	

Applying

Analyzing

standard solutions in the laboratory.

lipid biochemistry.

CO2:

CO3:

Learners will understand the role of buffers.

Learners will discuss the basics of carbohydrate and

Course Code:	USBT204	Class:	FY BIOTECH	Semester:	11
Course Name:	BIOCHEMISTRY: CONC ANALYTICAL TECHNIQ		BIOMOLECULES-II AND	BASIC	

- To provide a comprehensive understanding of the structure, properties, and functions

 1. of amino acids and proteins.
- To apply biochemical principles in the analysis of enzyme kinetics, enzyme inhibition, 2. and the use of enzymes as diagnostic tools.
- To introduce the fundamental concepts and applications of analytical techniques such 3.

 as chromatography, spectroscopy, and electrophoresis in biochemical analysis.

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will learn about fundamental structures and functions of amino acids & proteins.	Understanding
CO2:	Learners will develop an understanding of protein biochemistry and enzymology.	Applying
CO3:	Learners will learn to apply various analytical techniques for the separation, identification, and quantification of biochemical substances	Analyzing

Course Code:	USBT105	Class:	FYBIOTECH	Semester:	Ī
Course Name:	GENETICS				

- 1. To introduce students to the fundamental concepts of genetics.
- 2. To develop an understanding of the microbial genetic mechanisms.
- To equip students with the ability to apply genetic principles and techniques in solving 3. complex biological problems.

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will develop a comprehensive understanding of the basic principles of mendelian genetics.	Understanding
CO2:	Learners will be able to discuss the different processes in microbial genetics and their role in mapping genes.	Analyzing
CO3:	Learners will understand the relevance of population genetics.	Evaluating

Course	e Code:	USBT205	Class:	FYBIOTECH	Semester:	П
Course Name: PHYSIOLOGY AND IMMUNOLOGY						
Course Objectives:						
1.	To introduce the fundamental concepts and mechanisms of plant physiology.					
2.	To understand the role and mechanisms of different animal body fluids in maintaining					ining
۷.	life processes.					
2	To explore the principles of immunology, including the innate and acquired immune					
3. systems.						

Course	e Outcome:	Level of Blooms Taxonomy
	Learners will gain a comprehensive understanding of	
CO1:	the Physiological Processes of Plants and functions of	Understanding
	plant growth regulators.	
	Learners will develop a comprehensive and deep	
CO2:	understanding of the vital physiological processes of	Applying
	animals.	
CO3:	Learners will develop an understanding of the immune	Analyzing
CO3.	system's components and functions	Anaryzing

Course Code:	USBT106	Class:	FYBIOTECH	Semester:	1
Course Name:	MOLECULAR BIOLOGY	'- I			

- 1. To introduce students to the structural and functional aspects of chromosomes.
- 2. To provide a comprehensive understanding of DNA replication mechanisms.
- 3. To elucidate the concepts of mutations and DNA repair mechanisms.

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will develop an understanding of structure and organization of the hereditary material	Understanding
CO2:	Learners will be able to discuss the different processes involved in replication of DNA	Applying
CO3:	Learners will understand the relevance of physical, chemical and biological factors in mutations	Evaluating

Course Code:	USBT206	Class:	FYBIOTECH	Semester:	II
Course Name:	BASIC COMPUTERS AND BIOSTATISTICS				

- 1. To introduce the fundamental concepts and operations of computer systems.
- 2. To develop proficiency in utilizing computer networking.
- 3. To familiarize students with the principles of biostatistics.

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will develop an understanding of computer networking and internet	Applying
CO2:	Learners will develop skills to use word processing, spreadsheet, presentation software.	Understanding
CO3:	Learners will gain insights about the use of statistics in the field of biotechnology	Analyzing

Course	e Code:	USBT107		Class:	FYBIOTI	ECH	Semester:	I
Course Name: ABILITY ENHANCEMENT COURSE-COM			SE-COMI	MUNICATION	SKILLS			
Course	Course Objectives:							
1.	To equip stu	udents with f	foundati	onal kı	nowledge	e in gramn	nar, profess	ional
1.	communication, and presentation skills.							
2.	To develop students' soft skills.							
3.	To enhance students' professional skills in creativity, ethical decision-making,							
5.	leadership, and stress management.							
Course	e Outcome:					Level of Bloo	ms Taxonom	าง
	Learners will	be able	to un	derstand	d the			
CO1:	: communication skills required to excel in the real work						pplying	
	environment and corporate life.							
602	Learners will	gain insight int	to techi	nical an	d non-	Δ.		

Analyzing

Creating

CO2:

CO3:

technical qualities in career planning.

decision making and stress management

Learners will learn about Leadership, team building,

Course Code:	USBT207	Class:	FYBIOTECH	Semester:	II
Course Name:	ABILITY ENHANCEMENT COURSE SUSTAINABLE DEVELOPMENT AND ENVIRONMENTAL BIOTECHNOLOGY				ND
Course Objectives:					

- To develop an understanding of ecological principles, including the structure and function of ecosystems, biodiversity, and ecological interactions such as predation, 1. competition, and mutualism. To familiarize students with the concepts of pollution, climate change, and sustainable 2. development.
- To introduce renewable sources of energy, focusing on their importance, types, and the 3. role they play in promoting a sustainable lifestyle and reducing dependency on nonrenewable resources.

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will learn about the structure and functioning of the ecosystems.	Understanding
CO2:	Learners will gain insights about the concept of pollution, climate change and sustainable development	Analyzing
CO3:	Learners will understand the relevance of renewable energy sources and conservation of biodiversity.	Applying

Course Code:		USBTP101	Class:	FYBIOT	ECH	Semester:	1	
Course Name:		PRACTICAL'S OF USBT	101 AND	USBT10	2			
Course	Course Objectives:							
1.	To introduce students to the fundamental concepts and techniques of various branches							
Δ.	of biotechnology, including microbial, agricultural, and medical biotechnology.							
2.	To develop practical skills in handling, observing, and analyzing biological specimens							
۷.	using advanced microscopy techniques and staining methods.							
3.	To enhance un	To enhance understanding of the principles and applications of genetic engineering,						
5.	fermentation technology, and bioprocessing in biotechnological research and industry.							
	To promote th	e ability to critically a	ınalyze r	ecent a	dvancements	in biotechno	ology	
4.	through case studies and research papers, and understand their impact on society and							
the environment.								
Course	Course Outcome:				Level of Bloo	ms Taxonon	ny	
	Learners will ga	ain a comprehensive ur	nderstan	ding of				
CO1:	the scope and applications of biotechnology in various							
CO1.	fields, preparin	g them for careers in b	iotechno	ological	Understanding			
	research, industry, or further study.							
	Learners will a	cquire hands-on experi	ence in	using a				
	range of microscopy techniques, preparing and							
CO2:	staining biologi	Ą	pplying					
	implications of these techniques in research and							
	diagnostics.							
	Learners will de	evelop the ability to cri	tically e	valuate				
CO3:	recent biote	echnological advanc	ements	and	Evaluating			
	innovations th	rough case studies, ic	dentifyin	g their				
	potential benefits and limitations							
	Learners will demonstrate proficiency in laboratory							
	techniques such as media preparation, sterilization,			ization,				

microbial isolation, and fermentation, essential for

 $\quad \text{and} \quad$

production

experiments

Creating

CO4:

biotechnological

processes.

Course	e Code:	USBTP201	Class:	FYBIOTECH	Semester:	II	
Course Name:		PRACTICAL'S OF USBT201 AND USBT202					
Course	Course Objectives:						
1.	To introduce th	e principles and technic	ques invo	lved in the microbiolo	gical examina	ation,	
1.	isolation, and characterization of microorganisms from food samples.						
2.	To impart knowledge on the principles of food safety, Good Manufacturing Practices						
۷.	(GMP), and Standard Operating Procedures (SOPs) in the food industry.						
3.	To provide a d	comprehensive underst	tanding	of the unit operation	s involved ir	ı the	
3.	processing of different food products, including the production of fermented foods.						
	To educate o	n the methods for o	letecting	food adulterants, o	determining	food	
4.	preservative co	ncentrations, and unde	erstandin	g the microbial aspect	s of food spo	oilage	
	and preservation.						

Course	Outcome:	Level of Blooms Taxonomy
CO1:	Learners will learn how to perform microbial examination and accurately detect pathogenic bacteria in food samples	Applying
CO2:	Learners will learn the development and implementation of food safety procedures compliant with Good Manufacturing Practices	Analyzing
CO3:	Learners will learn to critically evaluate the quality parameters of food products during processing, such as in sauerkraut production	Evaluating
CO4:	Learners will learn the techniques for isolating and characterizing organisms causing food spoilage and fermenting organisms from food samples	Creating

Course	Code:	USBTP102	Class:	FYBIOTECH	Semester:	ı	
Course Name:		PRACTICAL'S OF USBT	101 AND	USBT102			
Course	Objectives:						
	To equip stude	ents with the foundat	ional kn	owledge and skills no	ecessary for	safe	
1.	practices in the chemistry laboratory, including understanding the appropriate dress						
	code, first aid, a	and handling chemicals	safely.				
	To introduce s	tudents to the prepara	ation an	d quantification of ch	emical solut	ions,	
2.	teaching them	how to make norma	l, molar	, molal, percent solu	tions, as we	ll as	
2.	solutions measi	ured in parts per millior	n (PPM) a	and parts per billion (P	PB).		
	To develop st	udents' understanding	of the	structural difference	s and functi	ional	
3.	properties of carbohydrates, lipids, and proteins, including the ability to perform						
	qualitative and	quantitative analyses o	n these	biomolecules.			
	To enhance stu	idents' analytical skills	through	the practice of titrime	etric, gravime	etric,	
4.	and complexor	metric methods for th	ne deter	mination of chemical	substances	and	
	reaction rates in	n various samples.					

(

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will learn the principles of laboratory safety, including proper laboratory attire, handling of chemicals, and emergency response procedures.	Understanding
CO2:	Learners will learn to accurately prepare and quantify chemical solutions, developing the ability to apply mathematical and chemical principles in the creation of specific solution concentrations.	Applying
CO3:	Learners will learn to distinguish between different types of carbohydrates, lipids, and proteins, and will be able to conduct basic laboratory tests to identify these biomolecules.	Analyzing
CO4:	Learners will learn to apply various analytical techniques such as titrimetric, gravimetric, and complexometric analysis, enhancing their proficiency in quantitative analysis and interpretation of results.	Evaluating

Course	e Code:	USBTP202	Class:	FYBIOTECH	Semester:	II	
Course Name:		PRACTICALS OF USBT	203 AND	USBT204			
Course	e Objectives:						
	To introduce students to the fundamental principles and experimental techniques of						
1.	1. food technology and microbiology, focusing on the analysis, characterization, ar				and		
	processing of food products.						
2.	To equip stud	dents with practical	skills for	conducting various	biochemical	and	
۷.	microbiological assays to assess food quality, safety, and nutritional value.						
	To develop the	ability to critically ana	lyze and	solve problems related	I to food spoi	lage,	
3.	preservation, and the development of new food products through hands-on laboratory						
	experiences.						
Л	To foster an un	derstanding of the regu	ulatory ar	nd ethical consideration	ns in food scie	ence,	
4.	including Good	Manufacturing Practic	es and fo	od safety protocols.			

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will learn to conduct qualitative and quantitative analyses of food components, demonstrating proficiency in laboratory techniques such as chromatography, titration, and microbial examination.	Applying
CO2:	Learners will learn to evaluate the effectiveness of food preservation methods and safety procedures, employing critical thinking to assess and improve food product quality.	Evaluating
CO3:	Learners will learn to design and execute experiments related to food science, including the development of new food products and the optimization of processing techniques.	Creating
CO4:	Learners will learn to interpret experimental data and scientific literature in food technology and microbiology, developing the ability to communicate	Analyzing

findings effectively through written and oral presentations.

Course Code:		USBTP103	Class:	FYBIOTECH	Semester:	1	
Course Name:		PRACTICALS OF USB	T105 AND	USBT106			
Course	Objectives:						
	To introduce s	tudents to the funda	amental c	oncepts and processe	es of mitosis	and	
1.	meiosis, includi	ng the stages involve	d and thei	r significance in cell di	vision and ge	netic	
	variation.						
2.	To provide han	ds-on experience in th	ne extracti	on and qualitative and	lysis of DNA	from	
۷.	plant materials, enhancing understanding of molecular genetics.						
	To develop skil	ls in identifying and	analyzing	genetic mutations, un	derstanding	their	
3.	sources, and	evaluating their im	pacts on	organisms using va	arious labora	atory	
	techniques.						
	To equip studer	nts with the ability to o	construct a	and analyze pedigree cl	harts for the s	tudy	
4.	of human genet	tic traits, fostering an	understan	ding of inheritance pa	tterns and ge	netic	
	disorders.						

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to accurately describe and differentiate between the processes of mitosis and meiosis, including the biological significance and outcomes of each process.	Understanding
CO2:	Learners will learn the techniques for DNA extraction, purification, and analysis, enabling them to practically assess genetic material from plant samples.	Applying
CO3:	Learners will learn to identify genetic mutations from given DNA sequences and understand the effects of mutagens on genetic material.	Analyzing
CO4:	Learners will learn to apply genetic concepts to human inheritance by constructing and analyzing pedigree charts, thereby gaining insights into genetic disorders and traits.	Applying

Course Code: USBTP203 Class: FYBIOTECH Semeste		Semester:	Ш					
Course Name:		PRACTICALS OF USBT2	205 AND	USBT206				
Course	e Objectives:							
	To understand the fundamental concepts and techniques used in plant physiology							
1.	1. experiments, including photosynthesis, pigment extraction, and plant gro				owth			
	regulation.							
	To acquire pra	ctical skills in conduct	ting labo	oratory experiments r	elated to hu	ıman		
2.	physiology such as blood count estimation, urine analysis, and understanding the							
	effects of solutions on red blood cells.							
3.	To develop pro	ficiency in using softwa	re tools	for data analysis, docu	ıment proces	ssing,		
3.	spreadsheet ma	spreadsheet manipulation, and presentation creation.						
4	To enhance res	earch and analytical ski	lls throu	gh the application of s	tatistical met	hods		
4.	to biological da	ta, including measures	of centra	al tendency and disper	sion.			

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will learn to design and execute experiments related to plant and human physiology, demonstrating proficiency in using laboratory equipment and accurately interpreting results.	Applying
CO2:	Learners will learn to effectively use various software tools for data organization, analysis, and presentation, including word processors, spreadsheets, and presentation software.	Understanding
CO3:	Learners will learn to critically analyze scientific data, using statistical methods to interpret and present findings in a clear and concise manner.	Analyzing
CO4:	Learners will learn to collaborate effectively in team settings, sharing responsibilities and combining knowledge from various disciplines to achieve common goals in experimental and project work.	Creating

FACULTY OF SCIENCE – UNDERGRADUATE

Program Name:	Bachelor of Science (Biotechnology)		
Assessment:	College	Pattern:	75:25 Marks
Objectives & Outcome Framed by:	University		
Syllabus Copy Link:	http://old.mu.ac.in/wp-conten	t/uploads/2	016/06/4.234-S.Y.B.Sc
Department	Biotechnology		

Course	e Code:	USBT301	Class:	SYBIOTECH	Semester:	Ш
Course	e Name:	BIOPHYSICS				
Course	e Objectives:					
1.	To provide a comprehensive understanding of the fundamental principles of biophysics.					
2.	To equip students with the knowledge to apply biophysical theories to solve biological problems.					
3.		ability of students to c	ritically (evaluate the application	ons and limita	tions
	of biophysical t	echniques in research.				

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will learn to integrate principles of classical Physics with biological systems	Applying
	Learners will learn to analyze and interpret data from	
CO2:	biophysical experiments, such as those involving	Analyzing
	Microscopy, Spectroscopy, and Electrophoresis	
	Learners will learn to design experiments and create	
CO3:	new approaches for solving complex problems in the	Creating
	field of biophysics	

Course	e Code:	USBT401	Class:	SYBIOTECH	Semester:	IV
Course Name: BIOCHEMISTRY						
Course	e Objectives:					
1.	To understand the fundamental metabolic pathways involved in the catabolism of carbohydrates, amino acids, lipids, and nucleotides.					
2.	To identify the key regulatory mechanisms that control metabolic processes.					
3.	To explore the metabolic path	e role and significanc ways.	e of AT	P and other energy-	rich molecul	es in

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will learn to articulate the various steps involved in the metabolic breakdown of	Understanding & Analyzing
	carbohydrates, amino acids, lipids, and nucleotides.	
	Learners will learn to explain the regulatory	
CO2:	mechanisms of metabolism and the impact of these	Understanding
	mechanisms on the metabolic fate of nutrients.	
	Learners will learn to describe the importance of ATP	
CO3:	and other high-energy molecules in the context of	Evaluating
	cellular metabolism and energy transfer.	

Course	e Code:	USBT302	Class:	SYBIOTECH	Semester:	Ш	
Course Name:		APPLIED CHEMISTRY -	-l				
Course	e Objectives:						
To have a firm 1.		foundation of the fund	amental	s and applications of C	rganic and G	ireen	
1.	Chemistry.						
2.	To develop an u	understanding of the di	fferent a	spects of Organic and	Green Chemi	istry.	
2	To discuss the	role of Organic Con	npounds	in Biology and Synt	thesis of Org	ganic	
3.	Compounds.						

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will learn develop an understanding of the different aspects of Organic and Green Chemistry	Understanding
CO2:	Learners will learn to discuss the role of Organic Compounds in Biology and Synthesis of Organic Compounds.	Applying
CO3:	Learners will learn to discuss the role of Green Chemistry and its application in Industry.	Creating

Course	e Code:	USBT402	Class:	SYBIOTECH	Semester:	IV
Course Name:		APPLIED CHEMISTRY -	-11			
Course Objectives:						
1.	To establish a solid understanding of the principles and applications of modern Chemical Theories as they apply to the Physical World.					
2.	To develop a comprehensive knowledge of Analytical Chemistry, Natural Product Chemistry, and their respective methodologies.					
3.		e basic concepts of Polyce and applications in to		·	, ·	sizing

Course	Outcome:	Level of Blooms Taxonomy
CO1:	Learner will develop an understanding of the different aspects of Analytical Chemistry	Understanding
CO2:	Learners will gain knowledge of Natural Product Chemistry and related acquired skills.	Applying
CO3:	Learners will gain an understanding of basic concepts in Polymer Chemistry and Nanomaterials.	Understanding

Course	e Code:	USBT303	Class:	SYBIOTECH	Semester:	Ш		
Course Name:		IMMUNOLOGY						
Course	Course Objectives:							
1.	Learners will learn to explain the underlying principles of Immunotechniques and their applications in research and diagnostics.							
2.	Learners will learn to analyze and interpret data from Immunotechniques to solve problems related to immune responses.							
3.	Learners will learn to explain the underlying principles of Immunotechniques and their applications in research and diagnostics.							

Course	e Outcome:	Level of Blooms Taxonomy
	Learners will be able to understand the role of	
CO1:	different types of Cells, Effector Molecules and	Understanding
	Effector Mechanisms in Immunology.	
	Learners will learn to explain the underlying principles	
CO2:	of Immunotechniques and their applications in	Analyzing
	research and diagnostics.	
	Learners will learn to analyze and interpret data from	
CO3:	Immunotechniques to solve problems related to	Applying
	immune responses.	

Course Code:		USBT403	Class:	SYBIOTECH		Semester	: IV	
Course Name:		MEDICAL MICROBIOL	MEDICAL MICROBIOLOGY					
Course Objectives:								
1.	To understand the fundamental factors that contribute to disease development.							
2.	·	ne relationship betw		croorganisms	and di	seases, in	cluding	
3.		nd disease mechanism Ils in the laboratory to		s for isolating,	identify	ing, and h	andling	
	various patriogi	CIIJ.						

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to list the factors playing a role in causing a disease	Understanding
CO2:	Learners will be able to Discuss the various aspects of Systemic Infections including Causative Agents, Symptoms and Prophylaxis.	Analyzing
CO3:	Learners will be able to Gain the technical capability of handling, isolating and identifying various Bacteria.	Applying

Course	urse Code: USBT304 Class: SYBIOTECH Semeste				Semester:	Ш	
Course	Course Name: CELL BIOLOGY AND CYTOGENETICS						
Course	e Objectives:						
1.	To provide a co	mprehensive understar c.	nding of t	he funda	amental conce	epts in Cell Bio	ology
2.	To equip students with the knowledge of Chromosomal structures and their abnormalities.						
3.	To impart an understanding of the mechanisms of Sex Determination, Linkage, and Genetic Mapping.						
C	- Outoomo				Lavel of Blac		

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to explain the structure and	Understanding
	function of the Cytoskeleton and Cell Membrane.	, and the second
	Learners will be able to identify various types of	
CO2:	Chromosomal Aberrations and discuss their	Applying
	implications.	
	Learners will be able to analyze the principles of Sex	
CO3:	Determination, Linkage, and Genetic Mapping and	Analyzing
	apply them in practical scenarios.	

Course	e Code:	USBT404 Class: SYBIOTECH Semester:				Semester:	IV
Course	Course Name: ENVIRONMENTAL BIOTECHNOLOGY						
Course	Course Objectives:						
1.	To develop a co	omprehensive understa	nding of	the cau	ses and effect	s of various	types
Δ.	of environmental pollution.						
2.	To explore the	role and effectiveness	of differ	ent poll	ution control	and manage	ment
۷.	strategies.						
3.	To investigate	the application and	impact	of bior	emediation a	and other g	green
J.	technologies in addressing environmental pollution.						
Course	Outcomo:				Level of Bloc	me Tayonon	317

Cours	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to identify and describe the major types of environmental pollution and their sources	Understanding
CO2:	Learners will be able to evaluate the effectiveness of various pollution control methods and strategies	Evaluating
CO3:	Learners will be able to design and propose innovative solutions for pollution mitigation using green technologies	Creating

Course	e Code:	USBT305	Class:	SYBIOTECH	Semester:	Ш	
Course Name:		MOLECULAR BIOLOGY	,				
Course Objectives:							
1.	To provide a c	comprehensive unders Regulation.	tanding	of the mechanisms i	involved in (Gene	
2.	To elucidate the processes of Transcription and Translation as they relate to Gene Expression.						
3.	To explore the Eukaryotes.	regulatory mechanism	ns of Ge	ne Expression in both	Prokaryotes	and	

Course	e Outcome:	Level of Blooms Taxonomy
	Learners will be able to discuss the mechanisms	
CO1:	associated with Gene Expression at the level of	Understanding
	Transcription and Translation.	
	Learners will be able to describe the processes	
CO2:	involved in the Regulation of Gene Expression in	Applying
	Prokaryotes and Eukaryotes	
	Learners will be able to analyze and interpret the roles	
CO3:	of various genetic components in the Regulation of	Analyzing
	Gene Expression	

Course Code:		USBT405	Class:	SYBIOT	ECH	Semester:	IV	
Course Name: BIOINFORMATICS and BIOSTATISTICS								
Course	e Objectives:							
1.	To provide a	foundational unders	tanding	of the	principles a	and concept	s in	
1.	Bioinformatics	and Biostatistics.						
2.	To familiarize students with the use of various computational tools and databases							
۷.	integral to Bioinformatics.							
3.	To develop skill	s in applying statistical	method	s for the	analysis of bio	ological data.		
Course Outcome:					Level of Bloo	ms Taxonom	ıy	
CO1:	Learners will be able to gain an understanding of the							
CO1.	basic concepts of Bioinformatics and Biostatistics Understanding							
	Learners will be able to understand the tools used in							

Learners will be able to apply the various Statistical

Tools for Analysis of Biological Data

Applying

Analyzing

CO2:

CO3:

Bioinformatics.

Course Code:		USBT306	Class:	SYBIOTECH	Semester:	III		
Course Name:		BIOPROCESS TECHNOI	LOGY					
Course Objectives:								
1.	To introduce the fundamental skills and principles in Fermentation Technology and lay the groundwork for advanced studies in Bioprocess Technology.							
2.	To provide an understanding of the diverse aspects of Bioprocess Technology, focusing on microorganisms used in industrial processes.							
3.	To equip learners with the knowledge and skills necessary for the design of fermenters and the optimization of fermentation processes.							

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will develop a comprehensive understanding	Understanding
CO1.	of the different dimensions of Bioprocess Technology.	onderstanding
CO2:	Learners will acquire the ability to screen and maintain	Applying
CO2.	industrially important microbial strains.	Αμμίλιμβ
	Learners will understand the principles underlying the	
CO3:	design of a fermenter and the optimization of	Analyzing
	fermentation processes.	

Course	e Code:	USBT406	Clas	s: S'	YBIOTECH		Semester:	IV
Course Name:		MOLECULAR DI	AGNOSTICS					
Course	e Objectives:							
1.	To provide a Diagnosis.	comprehensive	understand	ling o	f the prin	ciples us	sed in Mole	cular
2.	To enhance crit	ical thinking and lethods.	analytical sl	cills to	comprehe	nd and in	novate in the	field
3.		lents with the f new Diagnostic		e and	practical	skills ne	ecessary for	the

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will gain an in-depth understanding of the basic principles utilized in Molecular Diagnosis	Understanding
CO2:	Learners will develop critical thinking and analytical skills necessary for the evaluation and application of new Diagnostic Methods	Analyzing
CO3:	Learners will be able to apply the knowledge and skills acquired to contribute to the development of innovative Diagnostic Kits	Creating

Course Code: USBT307		Class:	SYBIOTECH	Semester:	Ш	
Course Name:		RESEARCH METHODLO	OGY			
Course Objectives:						
1.	To develop an Problem.	understanding of Re	esearch	Methodology and ide	entify a Rese	earch
2.	To acquire knowledge about Research Design and Data Collection methods.					
3.	To enhance skil	ls in Interpretation and	Report '	Writing.		

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to understand basic principles of Research Methodology and identify a research problem.	Understanding
CO2:	Learners will learn to design a research study and effectively collect data using various methodologies.	Applying
CO3:	Learners will be able to interpret research findings and proficiently communicate them through written reports.	Creating

Course Code:		USBT407	Class:	SYBIOT	ECH	Semester:	IV		
Course	e Name:	ENTERPRENEURSHIP [DEVELOP	MENT					
Course	Course Objectives:								
1.	To develop an entrepreneurial mindset that enables the identification and creating								
1.	new business o	pportunities.							
2	To understand	the process of setting	up an	enterpri	se, including _I	planning, loc	ation		
2.	selection, and financial management.								
2	To acquire skills in market research, marketing strategies, and international market								
3.	exploration.								
Course	e Outcome:				Level of Bloo	oms Taxonon	ny		
	Learners will b	pe able to systematic	ally sele	ct and					
CO1:	evaluate busin	ess ideas, applying c	ritical t	hinking	Ar	nalyzing			
	skills.								
CO2:	strategies for the	ne successful launch an	d mana	gement	Δ.				
CO2:	Applying								

Analyzing and Creating

of their business ventures, demonstrating problem-

Learners will be able to conduct comprehensive

market research and develop a marketing plan,

showcasing their capability in decision-making and

solving abilities.

strategic planning.

CO3:

Course	urse Code: USBTP301		Class:	SYBIOTECH	Semester:	Ш		
Course Name:		PRACTICALS OF USBT	301 AND	USBT 302				
Course	e Objectives:							
1.	To introduce the	ne principles and appli	cations c	of spectroscopy and ch	nromatograp	hy in		
1.	the analysis of	chemical compounds.						
2.	To develop skills in the extraction, purification, and analysis of DNA and proteins using							
۷.	biotechnological techniques.							
2	To provide h	ands-on experience i	n the s	ynthesis and purific	ation of or	ganic		
3.	compounds, emphasizing the understanding of reaction mechanisms.							
4.	To familiarize	students with the ope	ration ar	nd application of adva	anced micros	сору		
	techniques in t	he study of biological a	nd chemi	ical samples.				

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will gain proficiency in utilizing spectroscopic methods to analyze and characterize chemical compounds, enhancing their analytical skills.	Analyzing
CO2:	Learners will be able to perform DNA extraction and gel electrophoresis procedures, demonstrating proficiency in fundamental biotechnological methods.	Applying
CO3:	Learners will learn to synthesize and purify organic compounds, applying their knowledge of organic chemistry in practical settings.	Evaluation
CO4:	Learners will acquire the ability to operate electron and fluorescence microscopes, and interpret the images obtained, expanding their skills in microscopy.	Creating

Course	Course Code: USBTP401 Class: SYBIOTECH Semester:			Semester:	IV			
Course Name:		PRACTICALS OF USBT4	101 AND	USBT402				
Course Objectives:								
	To provide con	nprehensive understand	ding and	practical skills on the	determination	on of		
1.	1. biochemical markers in blood and urine, highlighting their significance in assessing organ function and disease states.					ssing		
	To introduce	the principles a	nd app	olications of chron	natography	and		
2.	spectrophotometry in the analysis of biological molecules and secondary metabolites							
	from plant sources.							
3.	To impart knowledge and laboratory skills related to the isolation, identification, and							
5.	analysis of organic compounds and the synthesis of nanoparticles.							
	To cultivate a	n appreciation for the	e role o	f biochemistry in the	e qualitative	and		
4.	quantitative ar	quantitative analysis of essential oils and the evaluation of plant-based medicinal						
properties through modern analytical techniques.								

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to apply techniques for the determination of biochemical markers in blood and urine, supporting the diagnosis and monitoring of health conditions.	Applying
CO2:	Learners will acquire the skills to isolate, identify, and analyze organic compounds, and synthesize nanoparticles, demonstrating proficiency in laboratory techniques and safety protocols.	Analyzing and creating
CO3:	Learners will gain expertise in the use of chromatography and spectrophotometry for the analysis of biological molecules, enhancing their analytical and interpretative skills.	Analyzing
CO4:	Learners will develop the ability to conduct qualitative and quantitative analyses of essential oils and evaluate the medicinal properties of plants, fostering	Understanding and evaluating

a comprehensive understanding of plant biochemistry and its applications.

Course	e Code:	USBTP302	Class:	SYBIOTECH	Semester:	Ш	
Course Name:		PRACTICALS OF USBT	303 AND	USBT 304			
Course	Course Objectives:						
1.	To introduce th	ne principles and meth	odologie	s of various immunolo	ogical and ge	netic	
	tests including ELISA, Western Blotting, and Chromosomal Analysis.						
2.	To develop an understanding of genetic variations, chromosomal aberrations, and their						
۷.	implications in human diseases.						
3.	To enhance skills in analyzing and interpreting data from immunological assays and						
0.	genetic experiments.						
4.	To foster the ab	pility to apply knowledg	e of gene	etics and immunology i	in solving con	nplex	
- r.	biological problems.						

Course	e Outcome:	Level of Blooms Taxonomy
	Learners will be able to demonstrate proficiency in	
CO1:	conducting and interpreting results from advanced	Applying and Analyzing
	immunological assays like ELISA and Western Blotting.	
	Learners will learn to identify and explain the	
CO2:	significance of various chromosomal aberrations and	Analyzing
	their roles in genetic disorders.	
	Learners will be able to apply genetic and	
CO3:	immunological concepts to analyze and solve case	Applying and Analyzing
	studies related to human diseases.	
	Learners will learn to critically evaluate scientific	
CO4:	literature in genetics and immunology, enhancing	Evaluating
	their research and analytical skills.	

Course	Code:	USBTP402	Class:	SYBIOT	ECH	Semester:	IV
Course	e Name:	PRACTICALS OF USBT	403 AND	USBT 40	04		
Course	Objectives:						
1.		e techniques and princh hogenic and non-patho	•			and identific	ation
	·	skills necessary for per				us microbiole	ogical
2.	·	· ·	Ū			us microbioic	gicai
	_	biochemical, serologic				hiology incl	ıdina
3.	To understand the principles and applications of environmental microbiology, including the assessment of water and air quality.						
	To expose students to the practical aspects of microbiology, including bioremediation						
4.							
Course	e Outcome:				Level of Bloc	ms Taxonon	าง
CO1:	different n	_	ing vancing	various their		nbering and erstanding	
CO2:	interpret a rai	learn to proficiently nge of biochemical, s s, enhancing their skil	erologica	al, and	Applying	and Analyzin	g
CO3:	microbiology measurements,	in an understanding or	3OD and	d COD	Al	oplying	
CO4·		ecome familiar with the and the operational as	<u>-</u>	•	Annlying	and Creating	7

treatment plants, equipping them with the knowledge

to contribute to environmental sustainability efforts.

Applying and Creating

CO4:

Course	e Code:	USBTP303	Class:	SYBIOTECH	Semester:	Ш
Course Name:		PRACTICALS OF USBT	305 AND	USBT 306		
Course	Course Objectives:					
1.	To understand	the fundamental pr	inciples	of microbial growth	and metabo	lism,
focusing on diauxic growth patterns and gene expression in E.coli.						
2.	To gain praction	cal skills in the cultiv	ation, so	reening, and genetic	manipulatio	n of
۷.	microorganisms for the production of antibiotics and alcohols.					
3.	To develop pr	oficiency in the labor	atory te	chniques required fo	or the extrac	tion,
J.	purification, an	d quantification of biod	hemical	products like penicillir	and ethanol	•
	To critically	analyze experimenta	l result	s, understand the	implications	s of
4.	biotechnologica	al processes, and appl	y bioassa	ays and chemical met	hods for pro	duct
	estimation.					

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to explain the mechanisms of microbial growth and the regulation of gene expression in response to environmental changes.	Understanding
CO2:	Learners will be able to perform microbial cultivation, genetic engineering, and screening techniques to isolate strains of interest for industrial applications.	Applying
CO3:	Learners will learn to execute protocols for the extraction and purification of biochemical products, demonstrating proficiency in laboratory techniques and equipment.	Analyzing
CO4:	Learners will be able to interpret experimental data, evaluate the efficiency of biotechnological processes, and accurately estimate product concentrations using various analytical methods.	Applying and Analyzing

Course	e Code:	USBTP403	Class:	SYBIOTECH	Semester:	IV	
Course Name:		PRACTICALS OF USBT	405 AND	USBT 406			
Course	Course Objectives:						
1.	To introduce the fundamentals of molecular biology databases such as NCBI, EMBL,					MBL,	
1.	DDBJ, PIR, and KEGG, and their applications in bioinformatics.						
2.	To equip learners with practical skills in the use of bioinformatics tools like NCBI BLAST						
۷.	for sequence analysis and alignment.						
3.	To provide a comprehensive understanding of protein classification using databases						
3.	such as CATH and SCOP, and the visualization of protein structures.						
4.	To impart hand	ds-on experience in mo	olecular	biology techniques in	cluding DNA,	/RNA	
	isolation, PCR, and restriction enzyme digestion.						

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to effectively navigate and utilize major bioinformatics databases and tools for biological data analysis, enhancing their understanding of sequence alignment and phylogeny.	Understanding and Applying
CO2:	Learners will gain proficiency in performing and interpreting the results of various molecular biology experiments, including DNA/RNA isolation, PCR, and enzyme digestion, through practical laboratory sessions.	Analyzing
CO3:	Learners will develop the ability to classify proteins and visualize molecular structures using specialized databases and software, facilitating a deeper comprehension of protein function and structure.	Understanding
CO4:	Learners will acquire the skills to design primers and conduct DNA amplification, equipping them with the foundational techniques necessary for genetic research and analysis.	Applying and Analyzing

FACULTY OF SCIENCE – UNDERGRADUATE

Program Name:	Bachelor of Science (Biotechnology)				
Assessment:	University Pattern: 100 Marks				
Objectives & Outcome Framed by:	Institute				
Syllabus Copy Link:	http://old.mu.ac.in/wp-conten	http://old.mu.ac.in/wp-content/uploads/2016/06/4.38-TYBSC-Biotech-revised-2018-191.pdf			
Department	Biotechnology				

Course	e Code:	USBT501	Class:	TYBIOTECH	Semester:	V
Course Name:		CELL BIOLOGY				
Course	e Objectives:					
1.	To provide an	understanding of the	cell cyc	cle, including the diff	ferences bety	ween
1.	prokaryotic and	d eukaryotic cells, and t	he mole	cular genetics of cell-c	ycle control.	
2.	To introduce th	ne principles of cell sig	naling ar	nd signal transduction	, emphasizin	g the
۷.	mechanisms of	signaling via G-protein-	-linked a	nd enzyme-linked cell-	surface recep	otors.
3.	To explore the	fundamental concepts (of develo	pmental biology, inclu	uding the stag	es of
3.	development, mechanisms of differentiation, and pattern formation.					
	To examine the biology of cancer, focusing on its molecular genetics, the micro					nicro
4.	evolutionary pr	ocess of cancer develo	pment, a	and current strategies	for diagnosis	s and
	treatment.					

Cou	rse Outcome:	Level of Blooms Taxonomy
	Learners will be able to describe the key stages and	
CO	: regulatory mechanisms of the cell cycle, analyzing its	Analyzing
	importance in both prokaryotic and eukaryotic cells.	
	Learners will gain the ability to explain the general	
CO2	: principles of cell signaling and the specific mechanisms	Understanding
	of action for different types of cell-surface receptors.	

	Learners will develop an understanding of the			
	processes involved in developmental biology,			
CO3:	including embryonic stem cells, differentiation, and	Applying		
	pattern formation, demonstrating their ability to apply			
	these concepts to various model organisms.			
	Learners will learn to identify the genetic alterations			
CO4:	leading to cancer, understand the role of viruses in			
CO4:	cancer, and analyze current approaches to cancer	Analyzing and Evaluating		
	diagnosis and treatment.			

Course Code:		USBT601	Class:	ТҮВІОТЕСН	Semester:	VI
Course Name:		BIOCHEMISTRY				
Course Objectives:						
1.	To provide an in-depth understanding of protein structure, including tertiary a					and
1.	quaternary stru	ictures, and the signific	ance of p	protein folding and de	naturation.	
2.	To explore the metabolic pathways involved in carbohydrate biosynthesis, its regulation					
۷.	in different organisms, and the biosynthesis and regulation of cholesterol.					
3.	To explain the	mechanism of action of	hormon	es, their biochemical	functions, and	d the
Э.	disorders associated with hormonal imbalances in the human body.					
1	To examine the	e role of vitamins and m	inerals ir	n human nutrition, the	ir dietary sou	irces,
4.	functions, and	the health consequence	es of defi	ciencies and excesses.		

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to describe the process of protein folding and recognize the factors that lead to protein denaturation.	Understanding
CO2:	Learners will learn how to elucidate the pathways of carbohydrate and cholesterol biosynthesis and their regulation, thereby applying knowledge to understand metabolic disorders.	Applying
CO3:	Learners will learn to identify the biochemical functions of different hormones, understand their mechanisms of action, and assess the impact of hormonal imbalances on health.	Analyzing
CO4:	Learners will learn to evaluate the importance of vitamins and minerals in diet, identify symptoms of their deficiencies and excesses, and recommend dietary adjustments to prevent malnutrition and over nutrition.	Evaluating

_				_			1
Course	e Code:	USBT502	Class:	TYBIOT	ECH	Semester:	V
Course	e Name:	MEDICAL MICROBIOLO	OGY AND	INSTRU	MENTATION		
Course	e Objectives:						
1.	To introduce t	he fundamental conce	epts and	proper	ties of viruse	es, including	their
1.	structure, classification, and mechanisms of replication.						
2	To provide a co	mprehensive understa	nding of	the disc	overy, design	, and mechar	nisms
2.	of action of chemotherapeutic drugs, including antibiotics and antivirals.						
2	To elucidate the principles, instrumentation, and applications of various spectroscopic						copic
3.	techniques in biological research.						
	To familiarize s	tudents with bio analy	tical tech	nniques,	including chr	omatography	/ and
4.	radioactivity-ba	sed methods, for the purification, analysis, and quantification of					
	biomolecules.						
Course	e Outcome:				Level of Bloo	oms Taxonom	ny
	Learners will	be able to describe	the str	uctural			
CO1:	characteristics	and classification o	f viruse:	s, and	Understand	ling and Appl	ying
	explain their cu	Itivation and mechanis	ms of inf	ection.			
	Learners will	gain knowledge on t	he desig	n and			
		intimicrobial and che	_				
CO2:		ng their mechanisms of		•	Rem	embering	
	principles of dr		0.00.0				
		velop the ability to app	lv snectro	osconic			
		the analysis and cha		·			
CO3:		ples, enhancing thei			Applying	and Analyzin	g
	skills.	pies, emiancing then	experi	illelitai			
		acquire proficiency in	• •	_			
CO4:	·	niques for the separati		•	А	pplying	
	of biomolecul	es, contributing to	their re	search			

capabilities.

Course	Code:	USBT602	Class:	TYBIOTECH	Semester:	VI	
Course Name:		INDUSTRIAL MICROBIO	OLOGY				
Course Objectives:							
	To introduce th	e foundational concept	s of dair	y technology, including	g the normal	flora	
1.	of milk, chang	ges in raw milk, and	the er	numeration and facto	ors affecting	the	
	bacteriological	quality of milk.					
	To equip studer	nts with an understandi	ng of do	wn-stream processing	(DSP) technic	ηues,	
2.	including foam	separation, types o	f precip	itation, filtration, ce	ntrifugation,	and	
	chromatography.						
	To familiarize s	tudents with the ferm	entation	process, including the	e developme	nt of	
3.	bacterial and fu	ingal inoculums, scale-	up and d	own techniques, and	the production	on of	
various fermentation products.							
	To instill a con	nprehensive understan	ding of	quality assurance (QA	(), quality co	ntrol	
4.	(QC), and good	d manufacturing practi	ces (GN	IP), focusing on their	implementa	tion,	
	documentation	, and regulatory certific	ation.				

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will develop the ability to analyze and evaluate the quality of milk, understanding the impacts of its normal flora and the factors affecting its bacteriological quality.	Analyzing and Evaluating
CO2:	Learners will gain practical skills in applying various down-stream processing techniques, including foam separation, filtration, and chromatography, to purify and process biological materials.	Applying
CO3:	Learners will learn to apply knowledge of fermentation technology in developing inoculums and scaling production processes for the manufacture of key fermentation products like streptomycin, protease, and ethanol.	Applying
CO4:	Learners will acquire the skills to implement, document, and ensure compliance with quality	Applying

assurance and good manufacturing practices within the dairy and fermentation industries.

Course Code:		USBT503	Class:	TYBIOTECH	Semester:	V	
Course Name:		GENOMICS AND MOLE	ECULAR	BIOLOGY			
Course	Course Objectives:						
1.	To provide a d	comprehensive unders	tanding	of the methodologies	s involved in	the	
1.	genetic engine	ering of plants and anim	nals.				
2.	To equip students with the knowledge of various physical and vector-based methods						
۷.	for gene transfer in plants and animals.						
3.	To familiarize st	udents with the tools a	nd techn	iques used in molecula	ar biology for	gene	
3.	cloning, sequencing, and editing.						
4.	To enhance the	ne understanding of	the app	olications and implica	ations of ge	netic	
	engineering in I	nealth, agriculture, and	environ	mental conservation.			

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to apply various genetic engineering techniques for plant and animal transformation.	Applying
CO2:	Learners will learn to proficiently use molecular biology tools for gene cloning and editing.	Applying and Analyzing
CO3:	Learners will be able to critically analyze the implications of genetic modifications in organisms.	Evaluating
CO4:	Learners will learn to design and implement genetic engineering projects.	Creating

Course	e Code:	USBT603	Class:	ТҮВІОТЕСН	Semester:	VI	
Course Name:		BASIC PHARMACOLOG	GY AND I	NEUROCHEMISTRY			
Course	Course Objectives:						
	To introduce th	e fundamental principl	es of pha	armacology, including	the mechanis	m of	
1.	drug action, dr	ug receptors, biologica	l respons	es, and the chemistry	of drug-rece	eptor	
	binding.						
2.	To understand the processes involved in drug absorption, distribution, and the factors						
۷.	that affect these processes, including physiological barriers to drug distribution.						
	To provide a	basic understanding of	of toxico	logy, including the i	dentification	and	
3.	management o	of poisonings, and the	impact	of drugs on chronic o	organ toxicity	and	
	reproduction.						
	To explore the	neurochemistry relate	d to the	anatomy and functio	ning of the b	rain,	
4.	including neuro	onal pathways, excitation	on, inhib	tion, and the action o	f neurotoxins	s and	
	neurotransmitt	ers.					

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will gain a comprehensive understanding of how drugs interact with the body to elicit a therapeutic effect, including an in-depth exploration of drug—receptor interactions and second-messenger systems.	Understanding
CO2:	Learners will be able to analyze the pharmacokinetic properties of drugs, including their absorption, distribution, metabolism, and excretion, and understand the implications of these properties on drug therapy.	Analyzing
CO3:	Learners will learn the principles of toxicology and regulatory toxicology, enabling them to identify and manage adverse drug reactions and poisonings effectively.	Applying
CO4:	Learners will develop an understanding of the neurochemical processes in the brain, including how	Understanding

drugs can modify these processes to treat neurological and psychiatric disorders.

Course	e Code:	USBT504	Class:	TYBIOTECH	Semester:	V
Course Name:		MARINE BIOTECHNOL	.OGY			
Course	Course Objectives:					
1.	To provide an	introductory understar	nding of	marine biotechnology	y, focusing o	n the
1.	marine ecosystem, its functioning, and the significance of hydrothermal vents.					
To explore the concept of bio prospect			cting, hig	hlighting the biotechr	nological pote	ential
2.	of marine micro	obes and the bioactive	compour	nds derived from mari	ne organisms	
3.	To delve into t	he development and a	pplicatio	n of drugs and enzym	es extracted	from
5.	marine sources	, emphasizing their pha	armaceut	ical and biotechnolog	ical relevance	<u>.</u>
	To examine th	e role of marine bio r	esources	in the production of	functional fo	oods,
4.	nutraceuticals,	and cosmetics, und	erscorin	g the importance o	of marine-de	rived
	ingredients in t	hese industries.				

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will gain a foundational understanding of marine ecosystems and their biotechnological applications, aligning with the Bloom's taxonomy level of understanding.	Understanding
CO2:	Learners will learn to identify and analyze the potential of marine microbes and other organisms for bio prospecting, achieving the Bloom's taxonomy level of analyzing.	Analyzing
CO3:	Learners will be able to comprehend and evaluate the process of developing marine-derived pharmaceuticals and enzymes, reaching the Bloom's taxonomy level of evaluating.	Evaluating
CO4:	Learners will learn to appreciate the significance of marine bio resources in creating functional foods, nutraceuticals, and cosmetics, fostering skills at the Bloom's taxonomy level of applying.	Applying

Course	e Code:	USBT604	Cl	lass:	TYBIOTECH	l	Semester:	VI
Course Name:		ENVIRONMEN	ITAL BIOTE	CHNO	LOGY			
Course	e Objectives:							
1.	To introduce st	udents to vario	us renewa	ble so	urces of en	ergy and t	heir applicati	on in
1.	sustainable development.							
2.	To educate students on the principles and processes involved in the biological							
۷.	treatment of industrial effluents.							
3.	To provide co	omprehensive	knowledge	e on	the meth	ods and	technologies	for
5.	wastewater treatment and heavy metal removal.							
4.	To impart understanding of hazardous waste management, focusing on biodegradation							
	techniques for various industrial wastes.							

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to identify and explain the different types of renewable energy sources and their roles in energy sustainability.	Understanding
CO2:	Learners will learn the fundamental concepts and operational mechanisms of biological processes for treating industrial effluents and solid wastes.	Applying
CO3:	Learners will gain the ability to analyze the effectiveness of various wastewater treatment methods and propose suitable solutions for heavy metal pollution.	Analyzing
CO4:	Learners will learn to assess the environmental impacts of hazardous wastes from different industries and apply biodegradation techniques for waste management.	Applying

Course	e Code:	Applied Component	Class:	TYBIOTECH	Semester:	V			
Course	e Name:	BIOSAFETY							
Course	e Objectives:								
1.	To provide an	understanding of biosa	ıfety priı	nciples, including the	identification	and			
1.	management o	management of biological risks in laboratory settings.							
2.	To impart kno	wledge on Good Labo	ratory F	Practices (GLP) and th	ne importano	ce of			
۷.	adherence to these practices in research and development environments.								
3.	To educate about the detection, identification, and testing of contaminants in food and								
5.	pharmaceutical products.								
	To explore the	ethical, regulatory, and	safety co	onsiderations involved	in biotechno	logy,			
4.	especially in the	especially in the context of genetically modified organisms and recombinant DNA							
	technology.								

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to assess and manage biological risks associated with various agents and laboratory procedures	Applying
CO2:	Learners will learn to implement Good Laboratory Practices, including documentation, calibration, and validation of methods	Applying
CO3:	Learners will learn to effectively detect and test for microbial contaminants in food and pharmaceuticals	Analyzing
CO4:	Learners will learn to critically evaluate the ethical, regulatory, and safety aspects of biotechnology applications	Evaluating

Course Code:		APPLIED COMPONENT	Class:	ТҮВІОТЕСН	Semester:	VI			
Course	e Name:	AGRIBIOTECHNOLOGY	′						
Course	e Objectives:								
	To introduce st	udents to the fundamer	itals and	applications of Precision	on Agriculture	e and			
1.	Greenhouse Te	echnology, including de	esign, co	nstruction, and envir	onmental co	ntrol			
	systems.								
	To provide an u	o provide an understanding of Plant Stress Biology, focusing on both abiotic and biotic							
2.	stresses, their	impact on plants, and the physiological and molecular responses of							
	plants.								
	To familiarize s	students with the princ	iples an	d applications of Mol	ecular Marke	ers in			
3.	Plant Breeding, including classical markers, DNA markers, and the use of molecular								
	markers for qua	markers for quantitative trait locus (QTL) mapping.							
	To educate stu	udents on the significa	nce and	l application of Bio f	ertilizers and	d Bio			
4.	pesticides, incl	uding their types, me	chanism	s of action, and rol	es in sustair	nable			
	agriculture.								

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to comprehend and apply the principles of Precision Agriculture and Greenhouse Technology, enhancing their capability to design and manage advanced agricultural systems.	Applying
CO2:	Learners will gain insights into the mechanisms of plant responses to various stresses and will be able to apply this knowledge to improve plant resilience and productivity.	Applying
CO3:	Learners will acquire the skills to utilize molecular markers in plant breeding effectively, contributing to the development of improved crop varieties.	Analyzing and Evaluating
CO4:	Learners will understand the importance and application of Bio fertilizers and Bio pesticides in sustainable agriculture, enabling them to implement	Understanding

environmentally friendly pest management and soil fertility enhancement strategies.

Course	e Code:	P501+502	Class:	ТҮВІОТЕСН	Semester:	V	
Course	e Name:	CELL BIOLOGY+ MEDI	CAL MICI	ROBIOLOGY & INSTRUI	MENTATION		
Course	e Objectives:						
	To equip stude	ents with the theoretic	al and p	ractical knowledge red	quired to per	form	
1.	and understan	d different chromatogr	aphy ted	hniques such as Affin	ity, Ion Excha	ange,	
	and Size Exclus	ion Chromatography.					
	To provide har	nds-on experience in H	igh-Perfo	ormance Liquid Chrom	atography (F	IPLC)	
2.	method validation, enhancing the analytical skills necessary for pharmaceutical and						
	biotechnological applications.						
	To introduce the methodologies and principles behind antibiotic sensitivity testing,						
3.	including MIC, MLC, and various sensitivity testing methods, to assess the effectiveness						
	of antibiotics.						
	To familiarize	students with basic c	oncepts	in Cancer Biology an	id developm	ental	
4.	biology techni	ques, emphasizing pra	ectical ex	oposure through field	l visits and	chick	
	embryo candlir	ng and inoculation meth	nods.				

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to apply their knowledge of various chromatography techniques to separate components from mixtures, demonstrating proficiency in laboratory skills and understanding of the underlying principles.	Understanding and Applying
CO2:	Learners will learn to validate HPLC methods, ensuring they can conduct accurate and reliable analyses critical for research and industry standards.	Analyzing
CO3:	Learners will learn to conduct antibiotic sensitivity tests using different methodologies, enabling them to determine the efficacy of antibiotics and understand resistance mechanisms, contributing to better clinical decision-making.	Applying
CO4:	Learners will learn to critically analyze scientific literature and reports, particularly in the areas of	Evaluating

Cancer Biology and developmental biology, enhancing their ability to synthesize information and draw informed conclusions.

Course	e Code:	P 601-P 602	Class:	TYBIOTECH	Semester:	VI	
Course Name:		BIOCHEMISTRY & IND	USTRIAL	MICROBIOLOGY			
Course Objectives:							
1.	To introduce th	e principles and technic	ques invo	lved in the biochemica	al analysis of	food,	
1.	with a focus on	milk and its derivatives	S.				
2.	To equip stud	lents with the skills	necessai	y to conduct micro	bial analysis	and	
۷.	understand its implications in food safety and quality.						
3.	To provide an understanding of the methods used for the analysis of human biological						
Э.	samples for health assessment.						
4.	To enhance cri	tical thinking and anal	ytical sk	ills through the practi	cal application	on of	
	biochemical and microbiological testing methods.						

Course	e Outcome:	Level of Blooms Taxonomy
	Learners will be able to accurately perform and	
CO1:	interpret the results of biochemical tests such as the	Applying
CO1.	estimation of milk protein using the Pynes method and	Applying
	the determination of vitamin C in food samples.	
	Learners will learn to effectively conduct microbial	
CO2:	analyses of milk using MBRT and RRT, and understand	Understanding
	their importance in assessing milk quality and safety.	
	Learners will be able to apply analytical techniques to	
CO3:	assess human health indicators, such as blood glucose	Analyzing
	levels and serum cholesterol	
CO4:	Learners will develop the ability to isolate and identify	Creating
CO4.	normal flora from milk and curd	Creating

Course	e Code:	USBT P 503-504	Class:	TYBIOT	ECH	Semester	: V
Course Name:		GENOMES AND M	IOLECULAR B	IOLOGY-	+ MARINE BI	OTECHNOLO)GY
Course	Course Objectives:						
1.	To introduce	the fundamenta	al techniqu	es of	molecular	biology in	cluding
1.	transformation	in E. coli, genomic	DNA extracti	on, and	PCR.		
2.	To provide han	nds-on experience v	vith methods	for stu	dying gene	expression, e	enzyme
۷.	activity, and biochemical properties of marine organisms.						
3.	To enhance u	nderstanding of tl	he principles	behind	d molecular	cloning, in	cluding
5.	restriction digestion, ligation, and vector design.						
4	To develop skil	ls in analyzing and i	nterpreting o	data fror	n experimer	nts involving	marine
4.	bacteria and al	gae, including their	biochemical	and gen	etic propert	ies.	

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to apply basic and advanced techniques of molecular biology to study the genetic and biochemical properties of organisms.	Applying
CO2:	Learners will learn how to design and conduct experiments, including the extraction of DNA, RNA, and proteins, and the analysis of their activities and functions.	Analyzing
CO3:	Learners will be able to critically analyze and interpret data from molecular biology experiments, and effectively communicate their findings.	Analyzing
CO4:	Learners will gain practical experience in applying molecular biology techniques to real-world problems in marine biology and biotechnology.	Creating

Course Code:		USBT P 603-604	Class:	TYBIOTECH	Semester:	VI
Course Name:		PHARMACOLOGY - NEUROCHEMISTRY AND ENVIRONMENTAL BIOTECHNOLOGY (50M)+ PROJECT WORK (50M)				
Course Objectives:						
1.	To provide comprehensive knowledge on the evaluation of LD 50 and ED 50 using suitable models such as Daphnia.			using		
2.	To impart understanding on the impact of heavy metals on bacterial growth and ecosystem health.					
3.	To train students in the analytical techniques required for the determination of total solids and the estimation of specific pollutants like chromium in effluent samples.					
4.		nts with the skills necestients, understanding t	•	. ,	·	

about the operations of Effluent Treatment Plants (ETP)/Common Effluent Treatment

Plants (CETP).

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to apply standard methodologies	
	to assess the toxicity and effectiveness of substances	Applying
	using model organisms.	
	Learners will gain the ability to critically analyze the	
CO2:	influence of environmental contaminants on microbial	Analyzing
	life.	
	Learners will learn how to conduct essential	
CO3:	environmental monitoring techniques, such as	Applying
	measuring total solids.	
	Learners will be equipped to undertake independent	
CO4:	research projects through a combination of	Creating
	theoretical knowledge and practical exposure.	

Cours	e Code:		Class:	TYBIOTECH	Semester:	V
Course Name:		BIOSAFETY PRACTICAL (APPLIED COMPONENT- BIOSAFETY PRACTICAL)				
Cours	Course Objectives:					
	To impart the	oretical knowledge and	practic	al skills required for t	he validation	and
1.	calibration of laboratory instruments such as micropipettes, pH meters, and weighing					
	balances.					
2.	To educate students on the principles and methodologies involved in conducting bioassays, with a focus on Vitamin B12.			cting		
۷.						
3.	To enable und	derstanding of food sa	afety sta	ndards and techniqu	es for identi	fying
adulterants in food products.						
	To provide co	mprehensive training	on deve	loping Standard Ope	rating Proced	dures
4.	(SOPs) for maj	or laboratory instrume	nts and	ensuring the sterility	of pharmace	utical

injectable.

Course	e Outcome:	Level of Blooms Taxonomy
CO1:	Learners will be able to perform validation and calibration of laboratory instruments, ensuring	Remembering and
	accurate measurements and reliable experimental results.	Understanding
	Learners will learn how to design and conduct	
CO2:	bioassays, specifically Vitamin B12 bioassays, applying their knowledge to real-world scenarios.	Applying
	Learners will acquire the ability to detect adulterants	
CO3:	in food products, enhancing their understanding of	Understanding
	food safety and quality control measures.	
	Learners will learn to develop and implement	
CO4:	Standard Operating Procedures (SOPs) for laboratory	
	equipment and ensure the sterility of injectable,	Applying
	contributing to their proficiency in laboratory	
	management and pharmaceutical quality assurance.	

Cours	e Code:		Class:	TYBIOTECH	Semester:	VI
Course Name:		AGRIBIOTECHNOLOGY PRACTICAL (APPLIED COMPONENT AGRIBIOTECHNOLOGY PRACTICAL)				
Course Objectives:						
1.	To provide an understanding of the principles and applications of RAPD analysis and its role in genetic diversity studies.			nd its		

- To equip students with the skills necessary for the isolation and characterization of agriculturally important microorganisms such as Rhizobium, Azotobacter, and Phosphate solubilizing bacteria.
- To explore the physiological and biochemical responses of plants to abiotic stress 3. conditions and the mechanisms of stress tolerance.
- To introduce the concepts of antioxidant defense mechanisms in plants, including the 4. estimation of antioxidants and antioxidant enzymes.

Course	e Outcome:	Level of Blooms Taxonomy	
CO1:	Learners will be able to perform RAPD analysis and	Analyzing	
	interpret the results for assessing genetic diversity.	Analyzing	
CO2:	Learners will gain proficiency in isolating and		
	identifying key agriculturally beneficial	Applying	
	microorganisms, enhancing their practical		
	microbiology skills.		
	Learners will understand the impacts of abiotic		
CO3:	stresses on plant growth and development and will be	Understanding	
	able to evaluate plant responses to these stresses.		
CO4:	Learners will learn how to quantify antioxidant		
	molecules and enzymes in plant tissues, providing	Analyzing	
	insights into the plants' defense mechanisms against	Analyzing	
	stress.		